Extraction of Graphene-Titanium Contact Resistances using Transfer Length Measurement and a Curve-Fit Method
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33122
Extraction of Graphene-Titanium Contact Resistances using Transfer Length Measurement and a Curve-Fit Method

Authors: Johanna Anteroinen, Wonjae Kim, Kari Stadius, Juha Riikonen, Harri Lipsanen, Jussi Ryynanen

Abstract:

Graphene-metal contact resistance limits the performance of graphene-based electrical devices. In this work, we have fabricated both graphene field-effect transistors (GFET) and transfer length measurement (TLM) test devices with titanium contacts. The purpose of this work is to compare the contact resistances that can be numerically extracted from the GFETs and measured from the TLM structures. We also provide a brief review of the work done in the field to solve the contact resistance problem.

Keywords: Contact resistance, graphene, TLM

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1330783

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3759

References:


[1] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, "Electric Field Effect in Atomically Thin Carbon Films," Science, vol. 306, no. 5696, pp. 666-669, 2004. (Online). Available: http: //www.sciencemag.org/cgi/content/abstract/306/5696/666
[2] A. K. Geim and K. Novoselov, "The Rise of Graphene," Nature Materials, vol. 6, pp. 183-191, 2007. (Online). Available: http: //dx.doi.org/10.1038/nmat1849
[3] F. Schwierz, "Graphene transistors," Nature Nanotechnology, vol. 5, pp. 487-496, 2010. (Online). Available: http://dx.doi.org/10.1038/nnano. 2010.89
[4] A. Venugopal, L. Colombo, and E. M. Vogel, "Contact resistance in few and multilayer graphene devices," Applied Physics Letters, vol. 96, no. 1, p. 013512, 2010. (Online). Available: http://link.aip.org/link/ ?APL/96/013512/1
[5] K. Nagashio, T. Nishimura, K. Kita, and K. Toriumi, "Contact resistivity and current flow path at metal/graphene contact," Applied Physics Letters, vol. 97, no. 14, p. 143514, 2010. (Online). Available: http://link.aip.org/link/?APL/97/143514/1
[6] F. Xia, V. Perebeinos, Y.-M. Lin, Y. Wu, and P. Avouris, "The origins and limits of metal-graphene junction resistance," Nature Nanotechnology, vol. 6, pp. 179-184, 2011. (Online). Available: http://dx.doi.org/10.1038/nnano.2011.6
[7] S. Russo, M. Craciun, M. Yamamoto, A. Morpurgo, and S. Tarucha, "Contact resistance in graphene-based devices," Physica E: Lowdimensional Systems and Nanostructures, vol. 42, no. 4, pp. 677 - 679, 2010, 18th International Conference on Electron Properties of Two-Dimensional Systems. (Online). Available: http: //www.sciencedirect.com/science/article/pii/S1386947709005165
[8] D. Schroder, Semiconductor Material and Device Characterization. Wiley, 2006.
[9] R. Danneau, F. Wu, M. F. Craciun, S. Russo, M. Y. Tomi, J. Salmilehto, A. F. Morpurgo, and P. J. Hakonen, "Shot noise in ballistic graphene," Phys. Rev. Lett., vol. 100, p. 196802, May 2008. (Online). Available: http://link.aps.org/doi/10.1103/PhysRevLett.100.196802
[10] S. Kim, J. Nah, I. Jo, D. Shahrjerdi, L. Colombo, Z. Yao, E. Tutuc, and S. K. Banerjee, "Realization of a high mobility dual-gated graphene field-effect transistor with Al2O3 dielectric," Applied Physics Letters, vol. 94, no. 6, p. 062107, 2009. (Online). Available: http://link.aip.org/link/?APL/94/062107/1
[11] E. Alpaydin, Introduction to Machine Learning. The MIT Press, 2004.