Study of the Transport of Multivalent Metal Cations through Cation-Exchange Membranes by Electrochemical Impedance Spectroscopy
Authors: V. Pérez-Herranz, M. Pinel, E. M. Ortega, M. García-Gabaldón
Abstract:
In the present work, Electrochemical Impedance Spectrocopy (EIS) is applied to study the transport of different metal cations through a cation-exchange membrane. This technique enables the identification of the ionic-transport characteristics and to distinguish between different transport mechanisms occurring at different current density ranges. The impedance spectra are dependent on the applied dc current density, on the type of cation and on the concentration. When the applied dc current density increases, the diameter of the impedance spectra loops increases because all the components of membrane system resistance increase. The diameter of the impedance plots decreases in the order of Na(I), Ni(II) and Cr(III) due to the increased interactions between the negatively charged sulfonic groups of the membrane and the cations with greater charge. Nyquist plots are shifted towards lower values of the real impedance, and its diameter decreases with the increase of concentration due to the decrease of the solution resistance.
Keywords: Ion-exchange Membranes, Electrochemical Impedance Espectroscopy, Multivalent Metal Cations.
Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1105173
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1885References:
[1] A. Agrawal, K.K. Sahu, “An overview of the recovery of acid from spent acidic solutions from steel and electroplating industries,” J. Hazard. Mater., vol. 171, pp. 61–75, 2009.
[2] S.S. Chen, C.W. Li, H.D. Hsu, P.C. Lee, Y.M. Chang, C.H. Yang, “Concentration and purification of chromate from electroplating wastewater by two-stage electrodialysis processes,” J. Hazard. Mater., vol. 161, pp. 1075–1080, 2009.
[3] C. Korzenowski, M.A.S. Rodrigues, L. Bresciani, A.M. Bernardes, J.Z. Ferreira, “Purification of spent chromium bath by membrane electrolysis,” J. Hazard. Mater., vol. 152, pp. 960–967, 2008.
[4] L. Marder, E. M. Ortega-Navarro, V. Pérez-Herranz, A. M. Bernardes, J. Z. Ferreira, “Chronopotentiometric study on the effect of boric acid in the nickel transport properties through a cation-exchange membrane,” Desalination, vol. 249, pp. 348-351, 2009.
[5] M. García-Gabaldón, V. Pérez-Herranz, E. Ortega, “Evaluation of two ion-exchange membranes for the transport of tin in the presence of hydrochloric acid,” J.Membr.Sci., vol. 371, pp. 65-74, 2011.
[6] M. C. Martí-Calatayud, M. García-Gabaldón, V. Pérez-Herranz, “Effect of the equilibria of multivalent metal sulfates on the transport through cation-exchange membranes at different current regimes,” J. Memb. Sci., vol. 443, pp. 181-192, 2013.
[7] H.G.L. Coster, T.C. Chilcott, A.C.F. Coster, “Impedance spectroscopy of interfaces, membranes and ultrastructures,” Bioelectrochem. Bioenerg., vol. 40, pp. 79–98, 1996.
[8] J. Benavente, A. Cañas, “Transport of NaNO3 solutions across an activated composite membrane: electrochemical and chemical surface characterizations,2 J. Membr. Sci., vol. 156, pp. 241–250, 1999.
[9] J. Benavente, M.I. Vázquez, “Effect of age and chemical treatments on characteristic parameters for active and porous sublayers of polymeric composite membranes,” J. Colloid Interface Sci., vol. 273, pp. 547–555, 2004.
[10] H.D. Hurwitz, R. Dibiani, “Investigation of electrical properties of bipolar membranes at steady state and with transient methods,” Electrochim. Acta, vol. 47, pp. 759–773, 2001.
[11] Y.-H. Xue, T.-W. Xu, “Catalytic water dissociation using hyperbranched aliphatic polyester as the interface of a bipolar membrane,” J. Colloid Interface Sci., vol. 316, pp. 604–611, 2007.
[12] S. Bason, Y. Oren, V. Freger, “Characterization of ion transport in thin films using electrochemical impedance spectroscopy II: Examination of the polyamide layer of RO membranes,” J. Membr. Sci., vol. 302, pp. 10–19, 2007.
[13] J. S. Park, T.C. Chilcott, “Characterization of BSA-fouling of ionexchange membrane systems using a subtraction technique for lumped data,” J. Membr. Sci., vol. 246, pp. 137–144, 2005.
[14] J. S. Park, T.C. Chilcott, “An approach to fouling characterization of an ion-exchange membrane using current–voltage relation and electrical impedance spectroscopy,” J. Colloid Interface Sci., vol. 294, pp.129– 138, 2006.
[15] H.-J. Lee, M.-K. Hong, “Analysis of fouling potential in the electrodialysis process in the presence of an anionic surfactant foulant,” J. Membr. Sci., vol. 325, pp. 719–726, 2008.
[16] M. C. Martí-Calatayud, M. García-Gabaldón, V. Pérez-Herranz, E. Ortega, “Determination of transport properties of Ni(II) through a Nafion cation-exchange membrane in chromic acid solutions,” J.Membr.Sci., vol. 379, pp. 449-458, 2011.
[17] Y. Kim, D. F. Lawler, “Overlimiting current by interactive ionic transport between space charge region and electric double layer near ionexchange membranes,” Desalination, vol. 285, pp. 245-252, 2012.
[18] R. Kwak, G. Guan, W. K. Peng, J. Han, “Microscale electrodialysis: concentration profiling and vortex visualization,” Desalination, vol. 308, pp. 138-146, 2013.
[19] J. Benavente, A. Cañas, M. J. Ariza, A. E. Lozano, J. de Abajo, “Electrochemical parameters of sulfonated poly(ether ether sulfone) membranes in HCl solutions determined by impedance spectroscopy and membrane potential measurements”, Solid State Ionics, vol. 145, pp. 53- 60, 2001.
[20] J. S. Park, J. H. Choi, J. J. Woo, S. H. Moon, “An electrical impedance spectroscopic (EIS) study on transport characteristics of ion‐exchange membrane systems,” Journal of Colloid and Interface Science, vol. 300, pp. 655-662, 2006.
[21] P. Dlugolecki, B. Anet, S. J. Metz, K. Nijmeijer, M. Wessling, “Transport limitations in ion exchange membranes at low salt concentrations,” J. Membr. Sci., vol. 346, pp. 163-171, 2010.