Search results for: Simulation architecture.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4204

Search results for: Simulation architecture.

3364 Spatial Services in Cloud Environment

Authors: Sašo Pečnik, Borut Žalik

Abstract:

Cloud Computing is an approach that provides computation and storage services on-demand to clients over the network, independent of device and location. In the last few years, cloud computing became a trend in information technology with many companies that transfer their business processes and applications in the cloud. Cloud computing with service oriented architecture has contributed to rapid development of Geographic Information Systems. Open Geospatial Consortium with its standards provides the interfaces for hosted spatial data and GIS functionality to integrated GIS applications. Furthermore, with the enormous processing power, clouds provide efficient environment for data intensive applications that can be performed efficiently, with higher precision, and greater reliability. This paper presents our work on the geospatial data services within the cloud computing environment and its technology. A cloud computing environment with the strengths and weaknesses of the geographic information system will be introduced. The OGC standards that solve our application interoperability are highlighted. Finally, we outline our system architecture with utilities for requesting and invoking our developed data intensive applications as a web service.

Keywords: Cloud Computing, Geographic Information System, Open Geospatial Consortium, Interoperability, Spatial data, Web- Services.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1681
3363 Response of the Residential Building Structureon Load Technical Seismicity due to Mining Activities

Authors: V. Salajka, Z. Kaláb, J. Kala, P. Hradil

Abstract:

In the territories where high-intensity earthquakes are frequent is paid attention to the solving of the seismic problems. In the paper are described two computational model variants based on finite element method of the construction with different subsoil simulation (rigid or elastic subsoil) is used. For simulation and calculations program system based on method final elements ANSYS was used. Seismic responses calculations of residential building structure were effected on loading characterized by accelerogram for comparing with the responses spectra method.

Keywords: Accelerogram, ANSYS, mining induced seismic, residential building structure, spectra, subsoil.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1513
3362 Simulation Modeling for Analysis and Evaluation of the Internal Handling Fleet System at Shahid Rajaee Container Port

Authors: Parham Azimi, Mohammad Reza Ghanbari

Abstract:

The dramatic increasing of sea-freight container transportations and the developing trends for using containers in the multimodal handling systems through the sea, rail, road and land in nowadays market cause general managers of container terminals to face challenges such as increasing demand, competitive situation, new investments and expansion of new activities and need to use new methods to fulfil effective operations both along quayside and within the yard. Among these issues, minimizing the turnaround time of vessels is considered to be the first aim of every container port system. Regarding the complex structure of container ports, this paper presents a simulation model that calculates the number of trucks needed in the Iranian Shahid Rajaee Container Port for handling containers between the berth and the yard. In this research, some important criteria such as vessel turnaround time, gantry crane utilization and truck utilization have been considered. By analyzing the results of the model, it has been shown that increasing the number of trucks to 66 units has a significant effect on the performance indices of the port and can increase the capacity of loading and unloading up to 10.8%.

Keywords: Container Terminal, Gantry Crane Utilization, Simulation, Vessel Turnaround Time

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1854
3361 A Knowledge-Based E-mail System Using Semantic Categorization and Rating Mechanisms

Authors: Azleena Mohd Kassim, Muhamad Rashidi A. Rahman, Yu-N. Cheah

Abstract:

Knowledge-based e-mail systems focus on incorporating knowledge management approach in order to enhance the traditional e-mail systems. In this paper, we present a knowledgebased e-mail system called KS-Mail where people do not only send and receive e-mail conventionally but are also able to create a sense of knowledge flow. We introduce semantic processing on the e-mail contents by automatically assigning categories and providing links to semantically related e-mails. This is done to enrich the knowledge value of each e-mail as well as to ease the organization of the e-mails and their contents. At the application level, we have also built components like the service manager, evaluation engine and search engine to handle the e-mail processes efficiently by providing the means to share and reuse knowledge. For this purpose, we present the KS-Mail architecture, and elaborate on the details of the e-mail server and the application server. We present the ontology mapping technique used to achieve the e-mail content-s categorization as well as the protocols that we have developed to handle the transactions in the e-mail system. Finally, we discuss further on the implementation of the modules presented in the KS-Mail architecture.

Keywords: E-mail rating, knowledge-based system, ontology mapping, text categorization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1423
3360 Evaluation of Energy-Aware QoS Routing Protocol for Ad Hoc Wireless Sensor Networks

Authors: M.K.Jeya Kumar

Abstract:

Many advanced Routing protocols for wireless sensor networks have been implemented for the effective routing of data. Energy awareness is an essential design issue and almost all of these routing protocols are considered as energy efficient and its ultimate objective is to maximize the whole network lifetime. However, the introductions of video and imaging sensors have posed additional challenges. Transmission of video and imaging data requires both energy and QoS aware routing in order to ensure efficient usage of the sensors and effective access to the gathered measurements. In this paper, the performance of the energy-aware QoS routing Protocol are analyzed in different performance metrics like average lifetime of a node, average delay per packet and network throughput. The parameters considered in this study are end-to-end delay, real time data generation/capture rates, packet drop probability and buffer size. The network throughput for realtime and non-realtime data was also has been analyzed. The simulation has been done in NS2 simulation environment and the simulation results were analyzed with respect to different metrics.

Keywords: Cluster nodes, end-to-end delay, QoS routing, routing protocols, sensor networks, least-cost-path.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1923
3359 Numerical Investigation of the Jacketing Method of Reinforced Concrete Column

Authors: S. Boukais, A. Nekmouche, N. Khelil, A. Kezmane

Abstract:

The first intent of this study is to develop a finite element model that can predict correctly the behavior of the reinforced concrete column. Second aim is to use the finite element model to investigate and evaluate the effect of the strengthening method by jacketing of the reinforced concrete column, by considering different interface contact between the old and the new concrete. Four models were evaluated, one by considering perfect contact, the other three models by using friction coefficient of 0.1, 0.3 and 0.5. The simulation was carried out by using Abaqus software. The obtained results show that the jacketing reinforcement led to significant increase of the global performance of the behavior of the simulated reinforced concrete column.

Keywords: Strengthening, jacketing, reinforced concrete column, 3D simulation, Abaqus.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 945
3358 Design and Development of Ferroelectric Material for Microstrip Patch Array Antenna

Authors: F.H.Wee, F. Malek

Abstract:

This paper presents the utilizing of ferroelectric material on antenna application. There are two different ferroelectric had been used on the proposed antennas which include of Barium Strontium Titanate (BST) and Bismuth Titanate (BiT), suitable for Access Points operating in the WLAN IEEE 802.11 b/g and WiMAX IEEE 802.16 within the range of 2.3 GHz to 2.5 GHz application. BST, which had been tested to own a dielectric constant of εr = 15 while BiT has a dielectric constant that higher than BST which is εr = 21 and both materials are in rectangular shaped. The influence of various parameters on antenna characteristics were investigated extensively using commercial electromagnetic simulations software by Communication Simulation Technology (CST). From theoretical analysis and simulation results, it was demonstrated that ferroelectric material used have not only improved the directive emission but also enhanced the radiation efficiency.

Keywords: Ferroelectric material, WLAN, WiMAX, dielectric constant

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1982
3357 Eigenwave Analysis and Simulation of Disc Loaded Interaction Structure for Wideband Gyro-TWT Amplifier

Authors: R. K. Singh, P. K. Jain

Abstract:

In the present paper, disc loaded interaction structure for potential application in wideband Gyro-TWT amplifier has been analyzed, taking all the space and modal harmonics into consideration, for the eigenwave solutions. The analysis has been restricted to azimuthally symmetric TE0,n mode. Dispersion characteristics have been plotted by varying the structure parameters and have been validated against HFSS simulation results. The variation of eigenvalue with respect to different structure parameters has also been presented. It has been observed that disc periodicity plays very important role for wideband operation of disc-loaded Gyro-TWT.

Keywords: Broadbanding, Disc-loaded interaction structure, Eigenvalue, Gyro-TWT, HFSS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1896
3356 CAD Based Predictive Models of the Undeformed Chip Geometry in Drilling

Authors: Panagiotis Kyratsis, Dr. Ing. Nikolaos Bilalis, Dr. Ing. Aristomenis Antoniadis

Abstract:

Twist drills are geometrical complex tools and thus various researchers have adopted different mathematical and experimental approaches for their simulation. The present paper acknowledges the increasing use of modern CAD systems and using the API (Application Programming Interface) of a CAD system, drilling simulations are carried out. The developed DRILL3D software routine, creates parametrically controlled tool geometries and using different cutting conditions, achieves the generation of solid models for all the relevant data involved (drilling tool, cut workpiece, undeformed chip). The final data derived, consist a platform for further direct simulations regarding the determination of cutting forces, tool wear, drilling optimizations etc.

Keywords: Drilling, CAD based simulation, 3D-modelling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1864
3355 FPGA Based Parallel Architecture for the Computation of Third-Order Cross Moments

Authors: Syed Manzoor Qasim, Shuja Abbasi, Saleh Alshebeili, Bandar Almashary, Ateeq Ahmad Khan

Abstract:

Higher-order Statistics (HOS), also known as cumulants, cross moments and their frequency domain counterparts, known as poly spectra have emerged as a powerful signal processing tool for the synthesis and analysis of signals and systems. Algorithms used for the computation of cross moments are computationally intensive and require high computational speed for real-time applications. For efficiency and high speed, it is often advantageous to realize computation intensive algorithms in hardware. A promising solution that combines high flexibility together with the speed of a traditional hardware is Field Programmable Gate Array (FPGA). In this paper, we present FPGA-based parallel architecture for the computation of third-order cross moments. The proposed design is coded in Very High Speed Integrated Circuit (VHSIC) Hardware Description Language (VHDL) and functionally verified by implementing it on Xilinx Spartan-3 XC3S2000FG900-4 FPGA. Implementation results are presented and it shows that the proposed design can operate at a maximum frequency of 86.618 MHz.

Keywords: Cross moments, Cumulants, FPGA, Hardware Implementation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1709
3354 Identification of Impact of Electromagnetic Fields at Low and High Frequency on Human Body

Authors: P. Sowa

Abstract:

The article reviews the current state of large-scale studies about the impact of electromagnetic field on natural environment. The scenario of investigations – simulation of natural conditions at the workplace, taking into consideration the influence both low and high frequency electromagnetic fields is shown.The biological effects of low and high frequency electromagnetic fields are below presented. Results of investigation with animals are shown. The norms and regulations concerning the levels of electromagnetic field intensity are reviewed.

Keywords: Electromagnetic field and environment, biological effects of electric field on human body, simulation of natural condition at workplace

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1774
3353 Remote Operation of CNC Milling Through Virtual Simulation and Remote Desktop Interface

Authors: Afzeri, A.G.E Sujtipto, R. Muhida, M. Konneh, Darmawan

Abstract:

Increasing the demand for effectively use of the production facility requires the tools for sharing the manufacturing facility through remote operation of the machining process. This research introduces the methodology of machining technology for direct remote operation of networked milling machine. The integrated tools with virtual simulation, remote desktop protocol and Setup Free Attachment for remote operation of milling process are proposed. Accessing and monitoring of machining operation is performed by remote desktop interface and 3D virtual simulations. Capability of remote operation is supported by an auto setup attachment with a reconfigurable pin type setup free technology installed on the table of CNC milling machine to perform unattended machining process. The system is designed using a computer server and connected to a PC based controlled CNC machine for real time monitoring. A client will access the server through internet communication and virtually simulate the machine activity. The result has been presented that combination between real time virtual simulation and remote desktop tool is enabling to operate all machine tool functions and as well as workpiece setup..

Keywords: Remote Desktop, PC Based CNC, Remote Machining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2851
3352 Virtual 3D Environments for Image-Based Navigation Algorithms

Authors: V. B. Bastos, M. P. Lima, P. R. G. Kurka

Abstract:

This paper applies to the creation of virtual 3D environments for the study and development of mobile robot image based navigation algorithms and techniques, which need to operate robustly and efficiently. The test of these algorithms can be performed in a physical way, from conducting experiments on a prototype, or by numerical simulations. Current simulation platforms for robotic applications do not have flexible and updated models for image rendering, being unable to reproduce complex light effects and materials. Thus, it is necessary to create a test platform that integrates sophisticated simulated applications of real environments for navigation, with data and image processing. This work proposes the development of a high-level platform for building 3D model’s environments and the test of image-based navigation algorithms for mobile robots. Techniques were used for applying texture and lighting effects in order to accurately represent the generation of rendered images regarding the real world version. The application will integrate image processing scripts, trajectory control, dynamic modeling and simulation techniques for physics representation and picture rendering with the open source 3D creation suite - Blender.

Keywords: Simulation, visual navigation, mobile robot, data visualization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1026
3351 Computer Modeling and Plant-Wide Dynamic Simulation for Industrial Flare Minimization

Authors: Sujing Wang, Song Wang, Jian Zhang, Qiang Xu

Abstract:

Flaring emissions during abnormal operating conditions such as plant start-ups, shut-downs, and upsets in chemical process industries (CPI) are usually significant. Flare minimization can help to save raw material and energy for CPI plants, and to improve local environmental sustainability. In this paper, a systematic methodology based on plant-wide dynamic simulation is presented for CPI plant flare minimizations under abnormal operating conditions. Since off-specification emission sources are inevitable during abnormal operating conditions, to significantly reduce flaring emission in a CPI plant, they must be either recycled to the upstream process for online reuse, or stored somewhere temporarily for future reprocessing, when the CPI plant manufacturing returns to stable operation. Thus, the off-spec products could be reused instead of being flared. This can be achieved through the identification of viable design and operational strategies during normal and abnormal operations through plant-wide dynamic scheduling, simulation, and optimization. The proposed study includes three stages of simulation works: (i) developing and validating a steady-state model of a CPI plant; (ii) transiting the obtained steady-state plant model to the dynamic modeling environment; and refining and validating the plant dynamic model; and (iii) developing flare minimization strategies for abnormal operating conditions of a CPI plant via a validated plant-wide dynamic model. This cost-effective methodology has two main merits: (i) employing large-scale dynamic modeling and simulations for industrial flare minimization, which involves various unit models for modeling hundreds of CPI plant facilities; (ii) dealing with critical abnormal operating conditions of CPI plants such as plant start-up and shut-down. Two virtual case studies on flare minimizations for start-up operation (over 50% of emission savings) and shut-down operation (over 70% of emission savings) of an ethylene plant have been employed to demonstrate the efficacy of the proposed study.

Keywords: Flare minimization, large-scale modeling and simulation, plant shut-down, plant start-up.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1719
3350 LQR Based PID Controller Design for 3-DOF Helicopter System

Authors: Santosh Kr. Choudhary

Abstract:

In this article, LQR based PID controller design for 3DOF helicopter system is investigated. The 3-DOF helicopter system is a benchmark laboratory model having strongly nonlinear characteristics and unstable dynamics which make the control of such system a challenging task. This article first presents the mathematical model of the 3DOF helicopter system and then illustrates the basic idea and technical formulation for controller design. The paper explains the simple approach for the approximation of PID design parameters from the LQR controller gain matrix. The simulation results show that the investigated controller has both static and dynamic performance, therefore the stability and the quick control effect can be obtained simultaneously for the 3DOF helicopter system.

Keywords: 3DOF helicopter system, PID controller, LQR controller, modeling, simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5201
3349 Simulation of Series Compensated Transmission Lines Protected with Mov

Authors: Abdolamir Nekoubin

Abstract:

In this paper the behavior of fixed series compensated extra high voltage transmission lines during faults is simulated. Many over-voltage protection schemes for series capacitors are limited in terms of size and performance, and are easily affected by environmental conditions. While the need for more compact and environmentally robust equipment is required. use of series capacitors for compensating part of the inductive reactance of long transmission lines increases the power transmission capacity. Emphasis is given on the impact of modern capacitor protection techniques (MOV protection). The simulation study is performed using MATLAB/SIMULINK®and results are given for a three phase and a single phase to ground fault.

Keywords: Series compensation, MOV - protected series capacitors, balanced and unbalanced faults

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4020
3348 Semi Classical Three-Valley Monte Carlo Simulation Analysis of Steady-State and Transient Electron Transport within Bulk Ga0.38In0.62P

Authors: N. Massoum, B. Bouazza, H. Tahir, C. Sayah, A. Guen Bouazza

Abstract:

to simulate the phenomenon of electronic transport in semiconductors, we try to adapt a numerical method, often and most frequently it’s that of Monte Carlo. In our work, we applied this method in the case of a ternary alloy semiconductor GaInP in its cubic form; The Calculations are made using a non-parabolic effective-mass energy band model. We consider a band of conduction to three valleys (ΓLX), major of the scattering mechanisms are taken into account in this modeling, as the interactions with the acoustic phonons (elastic collisions) and optics (inelastic collisions). The polar optical phonons cause anisotropic collisions, intra-valleys, very probable in the III-V semiconductors. Other optical phonons, no polar, allow transitions inter-valleys. Initially, we present the full results obtained by the simulation of Monte Carlo in GaInP in stationary regime. We consider thereafter the effects related to the application of an electric field varying according to time, we thus study the transient phenomenon which make their appearance in ternary material

Keywords: Monte Carlo simulation, steady-state electron transport, transient electron transport, alloy scattering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1748
3347 Modeling and Simulating Reaction-Diffusion Systems with State-Dependent Diffusion Coefficients

Authors: Paola Lecca, Lorenzo Dematte, Corrado Priami

Abstract:

The present models and simulation algorithms of intracellular stochastic kinetics are usually based on the premise that diffusion is so fast that the concentrations of all the involved species are homogeneous in space. However, recents experimental measurements of intracellular diffusion constants indicate that the assumption of a homogeneous well-stirred cytosol is not necessarily valid even for small prokaryotic cells. In this work a mathematical treatment of diffusion that can be incorporated in a stochastic algorithm simulating the dynamics of a reaction-diffusion system is presented. The movement of a molecule A from a region i to a region j of the space is represented as a first order reaction Ai k- ! Aj , where the rate constant k depends on the diffusion coefficient. The diffusion coefficients are modeled as function of the local concentration of the solutes, their intrinsic viscosities, their frictional coefficients and the temperature of the system. The stochastic time evolution of the system is given by the occurrence of diffusion events and chemical reaction events. At each time step an event (reaction or diffusion) is selected from a probability distribution of waiting times determined by the intrinsic reaction kinetics and diffusion dynamics. To demonstrate the method the simulation results of the reaction-diffusion system of chaperoneassisted protein folding in cytoplasm are shown.

Keywords: Reaction-diffusion systems, diffusion coefficient, stochastic simulation algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1505
3346 Real Time Approach for Data Placement in Wireless Sensor Networks

Authors: Sanjeev Gupta, Mayank Dave

Abstract:

The issue of real-time and reliable report delivery is extremely important for taking effective decision in a real world mission critical Wireless Sensor Network (WSN) based application. The sensor data behaves differently in many ways from the data in traditional databases. WSNs need a mechanism to register, process queries, and disseminate data. In this paper we propose an architectural framework for data placement and management. We propose a reliable and real time approach for data placement and achieving data integrity using self organized sensor clusters. Instead of storing information in individual cluster heads as suggested in some protocols, in our architecture we suggest storing of information of all clusters within a cell in the corresponding base station. For data dissemination and action in the wireless sensor network we propose to use Action and Relay Stations (ARS). To reduce average energy dissipation of sensor nodes, the data is sent to the nearest ARS rather than base station. We have designed our architecture in such a way so as to achieve greater energy savings, enhanced availability and reliability.

Keywords: Cluster head, data reliability, real time communication, wireless sensor networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1791
3345 Artificial Neural Network with Steepest Descent Backpropagation Training Algorithm for Modeling Inverse Kinematics of Manipulator

Authors: Thiang, Handry Khoswanto, Rendy Pangaldus

Abstract:

Inverse kinematics analysis plays an important role in developing a robot manipulator. But it is not too easy to derive the inverse kinematic equation of a robot manipulator especially robot manipulator which has numerous degree of freedom. This paper describes an application of Artificial Neural Network for modeling the inverse kinematics equation of a robot manipulator. In this case, the robot has three degree of freedoms and the robot was implemented for drilling a printed circuit board. The artificial neural network architecture used for modeling is a multilayer perceptron networks with steepest descent backpropagation training algorithm. The designed artificial neural network has 2 inputs, 2 outputs and varies in number of hidden layer. Experiments were done in variation of number of hidden layer and learning rate. Experimental results show that the best architecture of artificial neural network used for modeling inverse kinematics of is multilayer perceptron with 1 hidden layer and 38 neurons per hidden layer. This network resulted a RMSE value of 0.01474.

Keywords: Artificial neural network, back propagation, inverse kinematics, manipulator, robot.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2260
3344 A Capacitive Sensor Interface Circuit Based on Phase Differential Method

Authors: H. A. Majid, N. Razali, M. S. Sulaiman, A. K. A'ain

Abstract:

A new interface circuit for capacitive sensor is presented. This paper presents the design and simulation of soil moisture capacitive sensor interface circuit based on phase differential technique. The circuit has been designed and fabricated using MIMOS- 0.35"m CMOS technology. Simulation and test results show linear characteristic from 36 – 52 degree phase difference, representing 0 – 100% in soil moisture level. Test result shows the circuit has sensitivity of 0.79mV/0.10 phase difference, translating into resolution of 10% soil moisture level.

Keywords: Capacitive sensor, interface, phase differential.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3387
3343 Analysis and Experimentation of Interleaved Boost Converter with Ripple Steering for Power Factor Correction

Authors: A. Inba Rexy, R. Seyezhai

Abstract:

Through the fast growing technologies, design of power factor correction (PFC) circuit is facing several challenges. In this paper, a two-phase interleaved boost converter with ripple steering technique is proposed. Among the various topologies, Interleaved Boost converter (IBC) is considered as superior due to enriched performance, lower ripple content, compact weight and size. A thorough investigation is presented here for the proposed topology. Simulation study for the IBC has been carried out using MATLAB/SIMULINK. Theoretical analysis and hardware prototype has been performed to validate the results.

Keywords: Interleaved Boost Converter (IBC), Power Factor Correction (PFC), Ripple Steering Technique, Ripple, and Simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3204
3342 3D Quantum Numerical Simulation of Horizontal Rectangular Dual Metal Gate\Gate All Around MOSFETs

Authors: M. Khaouani, A. Guen-Bouazza, B. Bouazza, Z. Kourdi

Abstract:

The integrity and issues related to electrostatic performance associated with scaling Si MOSFET bulk sub 10nm channel length promotes research in new device architectures such as SOI, double gate and GAA MOSFET. In this paper, we present some novel characteristic of horizontal rectangular gate\gate all around MOSFETs with dual metal of gate we obtained using SILVACO TCAD tools. We will also exhibit some simulation results we obtained relating to the influence of some parameters variation on our structure, that having a direct impact on their threshold voltage and drain current. In addition, our TFET showed reasonable ION/IOFF ratio of (104) and low drain induced barrier lowering (DIBL) of 39 mV/V.

Keywords: GAA, SILVACO, QUANTUM, MOSFETs.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2856
3341 Harvesting of Kinetic Energy of the Raindrops

Authors: K. C. R. Perera, B. G. Sampath, V. P. C. Dassanayake, B. M. Hapuwatte.

Abstract:

This paper presents a methodology to harvest the kinetic energy of the raindrops using piezoelectric devices. In the study 1m×1m PVDF (Polyvinylidene fluoride) piezoelectric membrane, which is fixed by the four edges, is considered for the numerical simulation on deformation of the membrane due to the impact of the raindrops. Then according to the drop size of the rain, the simulation is performed classifying the rainfall types into three categories as light stratiform rain, moderate stratiform rain and heavy thundershower. The impact force of the raindrop is dependent on the terminal velocity of the raindrop, which is a function of raindrop diameter. The results were then analyzed to calculate the harvestable energy from the deformation of the piezoelectric membrane.

Keywords: Raindrop, piezoelectricity, deformation, terminal velocity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6569
3340 Modelling and Simulation of Cascaded H-Bridge Multilevel Single Source Inverter Using PSIM

Authors: Gaddafi S. Shehu, T. Yalcinoz, Abdullahi B. Kunya

Abstract:

Multilevel inverters such as flying capacitor, diodeclamped, and cascaded H-bridge inverters are very popular particularly in medium and high power applications. This paper focuses on a cascaded H-bridge module using a single direct current (DC) source in order to generate an 11-level output voltage. The noble approach reduces the number of switches and gate drivers, in comparison with a conventional method. The anticipated topology produces more accurate result with an isolation transformer at high switching frequency. Different modulation techniques can be used for the multilevel inverter, but this work features modulation techniques known as selective harmonic elimination (SHE).This modulation approach reduces the number of carriers with reduction in Switching Losses, Total Harmonic Distortion (THD), and thereby increasing Power Quality (PQ). Based on the simulation result obtained, it appears SHE has the ability to eliminate selected harmonics by chopping off the fundamental output component. The performance evaluation of the proposed cascaded multilevel inverter is performed using PSIM simulation package and THD of 0.94% is obtained.

Keywords: Cascaded H-bridge Multilevel Inverter, Power Quality, Selective Harmonic Elimination.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5075
3339 Conceptual Design of Aeroelastic Demonstrator for Whirl Flutter Simulation

Authors: J. Cecrdle, J. Malecek

Abstract:

This paper deals with the conceptual design of the new aeroelastic demonstrator for the whirl flutter simulation. The paper gives a theoretical background of the whirl flutter phenomenon and describes the events of the whirl flutter occurrence in the aerospace practice. The second part is focused on the experimental research of the whirl flutter on aeroelastic similar models. Finally the concept of the new aeroelastic demonstrator is described. The demonstrator represents the wing and engine of the twin turboprop commuter aircraft including a driven propeller. It allows the changes of the main structural parameters influencing the whirl flutter stability characteristics. It is intended for the experimental investigation of the whirl flutter in the wind tunnel. The results will be utilized for validation of analytical methods and software tools.

Keywords: aeroelasticity, flutter, whirl flutter, W-WING demonstrator

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3063
3338 Simulation of Obstacle Avoidance for Multiple Autonomous Vehicles in a Dynamic Environment Using Q-Learning

Authors: Andreas D. Jansson

Abstract:

The availability of inexpensive, yet competent hardware allows for increased level of automation and self-optimization in the context of Industry 4.0. However, such agents require high quality information about their surroundings along with a robust strategy for collision avoidance, as they may cause expensive damage to equipment or other agents otherwise. Manually defining a strategy to cover all possibilities is both time-consuming and counter-productive given the capabilities of modern hardware. This paper explores the idea of a model-free self-optimizing obstacle avoidance strategy for multiple autonomous agents in a simulated dynamic environment using the Q-learning algorithm.

Keywords: Autonomous vehicles, industry 4.0, multi-agent system, obstacle avoidance, Q-learning, simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 483
3337 Direct Numerical Simulation of Oxygen Transfer at the Air-Water Interface in a Convective Flow Environment and Comparison to Experiments

Authors: B. Kubrak J. Wissink H. Herlina

Abstract:

Two-dimensional Direct Numerical Simulation (DNS) of high Schmidt number mass transfer in a convective flow environment (Rayleigh-B'enard) is carried out and results are compared to experimental data. A fourth-order accurate WENO-scheme has been used for scalar transport in order to aim for a high accuracy in areas of high concentration gradients. It was found that the typical spatial distance between downward plumes of cold high concentration water and the eddy size are in good agreement with experiments using a combined PIV-LIF technique for simultaneous and spatially synoptic measurements of 2D velocity and concentration fields.

Keywords: Air-Water Interface, DNS, Gas Transfer, LIF.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1314
3336 Traffic Signal Design and Simulation for Vulnerable Road Users Safety and Bus Preemption

Authors: Shih-Ching Lo, Hsieh-Chu Huang

Abstract:

Mostly, pedestrian-car accidents occurred at a signalized interaction is because pedestrians cannot across the intersection safely within the green light. From the viewpoint of pedestrian, there might have two reasons. The first one is pedestrians cannot speed up to across the intersection, such as the elders. The other reason is pedestrians do not sense that the signal phase is going to change and their right-of-way is going to lose. Developing signal logic to protect pedestrian, who is crossing an intersection is the first purpose of this study. Another purpose of this study is improving the reliability and reduce delay of public transportation service. Therefore, bus preemption is also considered in the designed signal logic. In this study, the traffic data of the intersection of Chong-Qing North Road and Min-Zu West Road, Taipei, Taiwan, is employed to calibrate and validate the signal logic by simulation. VISSIM 5.20, which is a microscopic traffic simulation software, is employed to simulate the signal logic. From the simulated results, the signal logic presented in this study can protect pedestrians crossing the intersection successfully. The design of bus preemption can reduce the average delay. However, the pedestrian safety and bus preemptive signal will influence the average delay of cars largely. Thus, whether applying the pedestrian safety and bus preemption signal logic to an isolated intersection or not should be evaluated carefully.

Keywords: vulnerable road user, bus preemption, signal design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1653
3335 Reliability Levels of Reinforced Concrete Bridges Obtained by Mixing Approaches

Authors: Adrián D. García-Soto, Alejandro Hernández-Martínez, Jesús G. Valdés-Vázquez, Reyna A. Vizguerra-Alvarez

Abstract:

Reinforced concrete bridges designed by code are intended to achieve target reliability levels adequate for the geographical environment where the code is applicable. Several methods can be used to estimate such reliability levels. Many of them require the establishment of an explicit limit state function (LSF). When such LSF is not available as a close-form expression, the simulation techniques are often employed. The simulation methods are computing intensive and time consuming. Note that if the reliability of real bridges designed by code is of interest, numerical schemes, the finite element method (FEM) or computational mechanics could be required. In these cases, it can be quite difficult (or impossible) to establish a close-form of the LSF, and the simulation techniques may be necessary to compute reliability levels. To overcome the need for a large number of simulations when no explicit LSF is available, the point estimate method (PEM) could be considered as an alternative. It has the advantage that only the probabilistic moments of the random variables are required. However, in the PEM, fitting of the resulting moments of the LSF to a probability density function (PDF) is needed. In the present study, a very simple alternative which allows the assessment of the reliability levels when no explicit LSF is available and without the need of extensive simulations is employed. The alternative includes the use of the PEM, and its applicability is shown by assessing reliability levels of reinforced concrete bridges in Mexico when a numerical scheme is required. Comparisons with results by using the Monte Carlo simulation (MCS) technique are included. To overcome the problem of approximating the probabilistic moments from the PEM to a PDF, a well-known distribution is employed. The approach mixes the PEM and other classic reliability method (first order reliability method, FORM). The results in the present study are in good agreement whit those computed with the MCS. Therefore, the alternative of mixing the reliability methods is a very valuable option to determine reliability levels when no close form of the LSF is available, or if numerical schemes, the FEM or computational mechanics are employed.

Keywords: Structural reliability, reinforced concrete bridges, mixing approaches, point estimate method, Monte Carlo simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1384