Eigenwave Analysis and Simulation of Disc Loaded Interaction Structure for Wideband Gyro-TWT Amplifier
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33122
Eigenwave Analysis and Simulation of Disc Loaded Interaction Structure for Wideband Gyro-TWT Amplifier

Authors: R. K. Singh, P. K. Jain

Abstract:

In the present paper, disc loaded interaction structure for potential application in wideband Gyro-TWT amplifier has been analyzed, taking all the space and modal harmonics into consideration, for the eigenwave solutions. The analysis has been restricted to azimuthally symmetric TE0,n mode. Dispersion characteristics have been plotted by varying the structure parameters and have been validated against HFSS simulation results. The variation of eigenvalue with respect to different structure parameters has also been presented. It has been observed that disc periodicity plays very important role for wideband operation of disc-loaded Gyro-TWT.

Keywords: Broadbanding, Disc-loaded interaction structure, Eigenvalue, Gyro-TWT, HFSS.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1060297

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1935

References:


[1] B. R. Cheo and A. Rekiouak, "Linear and nonlinear analysis of a wideband gyro-TWT," IEEE Trans. Electron Dev., ED-36, pp. 802-810, 1989.
[2] B. N. Basu, Electromagnetic Theory and Applications in Beam-Wave Electronics, Singapore: World Scientific, 1996.
[3] K. R Chu and J. L. Hirshfield, "Comparative study of the axial and azimuthal bunching mechanism in electromagnetic cyclotron instabilities," Phys. Fluids, vol. 21, pp. 461-466, 1978.
[4] A. J. Sangster, "Small-signal analysis of the traveling-wave gyrotron using Pierce parameters," Proc. IEE, Pt. 1, vol. 127, pp. 45-52, 1980.
[5] A. J. Sangster, "Small-signal bandwidth characteristics of a traveling wave gyrotron amplifier," Int. J. Electron., vol. 51, pp. 583-594, 1981.
[6] S. J. Rao, P. K. Jain and B. N. Basu, "Amplification in gyro traveling wave tubes - dispersion relation and gain-bandwidth characteristics," IETE Tech. (India), vol. 13, pp. 141-150, 1996.
[7] G. S. Park, S. Y. Park, R. H. Kyser, C. M. Armstrong, A. K. Ganguly, and R. K. Parker, "Broadband operation of a Ka-band tapered gyrotraveling- wave amplifier," IEEE Trans. Plasma Sci., vol. 22, pp. 536- 543, 1994.
[8] S. Ahn, "Gain and bandwidth of a gyrotron amplifier with tapered rectangular waveguide," Int. J. Electronics, vol. 53, pp. 673-679, 1982.
[9] M. Agrawal, G. Singh, P. K. Jain, and B. N. Basu, "Analysis of a tapered vane loaded broad-band gyro-TWT," IEEE Trans. Plasma Sci., vol. 29, pp. 439-444, 2001.
[10] K. C. Leou, "Theoretical and experimental study of a dielectric-loaded wide-band gyro-TWT-, Ph. D. thesis, University of California, Los Angeles, 1994.
[11] J. Y. Choe, H. S. Uhm, and S. Ahn, "Broad-band operation in a dielectric loaded gyrotron," IEEE Trans. Nuclear Sci., vol. 28, pp. 2918- 2920, 1981.
[12] A. K. Ganguly and S. Ahn, "Large signal theory of two stage wide-band gyro-TWT," IEEE Trans. Electron. Dev., vol. ED-31, pp. 474-480, 1984.
[13] S. Ahn, "Gain and bandwidth of a gyrotron amplifier with tapered rectangular waveguide," Int. J. Electronics, vol. 53, pp. 673-679, 1982.
[14] G. S. Park, S. Y. Park, R. H. Kyser, C. M. Armstrong, A. K. Ganguly, and R. K. Parker, "Broadband operation of a Ka-band tapered gyrotraveling- wave amplifier," IEEE Trans. Plasma Sci., vol. 22, pp. 536- 543, 1994.
[15] G. S. Park, J. J. Choi, S. Y. Park, C. M. Armstrong, A. K. Ganguly, and R. H. Kyser, "Gain broadening of two stage tapered gyrotron traveling wave amplifier," Phys. Rev. Lett., vol. 74, pp. 2399-2402, 1995.
[16] K. R. Chu, Y. Y. Lau, L. R. Barnett, and V. L. Granatstein, "Theory of a wide-band distributed gyrotron traveling wave amplifier," IEEE Trans. Electron Dev., vol. ED-28, pp. 866-871, 1981.
[17] J. Y. Choe and H. S. Uhm, "Analysis of the wide band gyrotron amplifier in a dielectric loaded waveguide," J. Appl. Phys., vol. 52, pp. 4506-4516, 1981.
[18] K. C. Leou, D. B. Mcdermott, and N. C. Luhmann Jr., "Dielectric-loaded wideband gyro-TWT," IEEE Trans. Plasma Sc., PS-20, pp. 303-305, 1992.
[19] S. J. Rao, P. K. Jain, and B. N. Basu, " Broadbanding of a gyro-TWT by dielectric loading through dispersion shaping," IEEE Trans. Electron Dev., ED-43, pp. 2290-2299, 1996.
[20] H. S. Uhm and J. Y. Choe, "Gyrotron amplifier in a helix loaded waveguide," Phys. Fluids, vol. 26, pp. 3418-3425, 1983.
[21] S. J. Rao, P. K. Jain, and B. N. Basu, "Hybrid-mode helix-loading effects on gyro-traveling-wave tubes," Int. J. Electron., vol. 82, pp. 663- 675, 1997.
[22] G. G. Denisov, V. L. Bratman, A. D. R. Phelps, and S. V. Samsonov, "Gyro-TWT with a helical operating waveguide: new possibilities to enhance efficiency and frequency bandwidth," IEEE Trans. Plasma Sc., PS-26, pp. 508-518, 1998.
[23] G. G. Denisov, V. L. Bratman, A. L. Cross, A. D. R. Phelps, K. Ronald, S. V. Samsonov, and C. G. Whyte, "Gyrotron traveling wave amplifier with a helical interaction waveguide," Phys. Rev. Lett., vol. 81, pp. 5680-5683, 1998.
[24] J. Y. Choe and H. S. Uhm, "Theory of gyrotron amplifier in disc and helix loaded waveguides," Int. J. Electron., vol. 53, pp. 729-741, 1982.
[25] E. L. Chu and W. W. Hansen, "The theory of disc-loaded wave guides," J. Appl. Phys., vol. 18, pp. 996-1008, 1982.
[26] K. C. Leou, T. Pi, D. B. McDermott, and N. C. Luhmann Jr., "Circuit design for a wide-band disk-loaded gyro-TWT amplifier," IEEE Trans. Plasma Sc., PS-26, pp. 488-495, 1998.
[27] Y. Zhang, Y. Mo, and X. Zhou, "Rigorous analysis of the disk-loaded waveguide slow-wave structures" Int. J. Infrared and Millimeter Waves, vol. 24, pp. 525-535, 2003.
[28] L. Yue, W. Wang, Y. Gong, and K. Zhang, "Analysis of coaxial ridged disk-loaded slow-wave structures for relativistic traveling wave tubes," IEEE Trans. Plasma Sci., vol. 32, pp. 1086-1092, 2004.
[29] C. W. Baik, S. G Jeon, D. H. Kim, A. K. Sinha, N. Sato, K. Yokoo, and G. S. Park, "Experimental verification of frequency multiplication in two-stage tapered gyro-TWT," 30th IEEE Int. Conf. on Plasma Science, ICOPS 2003, pp. 258, 2003.
[30] W. J. Gallagher, "Periodic structure studies," IEEE Trans. Nuclear Sci., vol. NS-32, pp. 2788-2790, 1985.
[31] P. K. Saha and P. J. B. Clarricoats, "Propagation and radiation behaviour of corrugated coaxial horn feed," Proc. IEE, vol. 118, pp. 1177-1186, 1971.
[32] P. J. B. Clarricoats and P. K. Saha, "Propagation and radiation behaviour of corrugated feeds Part 1-Corrugated-waveguide feed," Proc. IEE, vol. 118, pp. 1167-1176, 1971.
[33] R. E. Collin, Foundation for Microwave Engineering, New York: McGraw-Hill, 1988.
[34] S. G. Mikhin, Variational Methods in Mathematical Physics, New York: Pergamon, 1964.
[35] H. Hahn, C. I. Goldstein, and W. Bauer, "On the theory of iris-loaded waveguides," Int. J. Electronics and Comm., AEU, vol. 30, pp. 297-302, 1976.
[36] R. W. Scharstein and A. T. Adams, "Galerkin solution for the thin circular iris in a TE11-mode circular waveguide," IEEE Trans. Microwave Theory Tech., vol. 36, pp. 106-113, Jan.1988.
[37] D. Dasgupta and P. K. Saha, "Modal properties of quadruple-ridged circular waveguide by Galerkin-s method," Indian J. Pure and Appl. Phys., vol. 22, pp. 106-109, 1984.
[38] S. Amari, J. Bornemann, A. Laisné, and R. Vahldieck, "Design and analysis of iris-coupled and dielectric-loaded 1/8-cut TE01-mode microwave bandpass filters," IEEE Trans. Microwave Theory Tech., vol. 49, pp. 413-421, 2001.
[39] S. Amari, R. Vahldieck, and J. Bornemann, "Analysis of propagation in periodically loaded circular waveguides," IEE Proc. Microw. Antennas Propag., vol. 146, pp. 50-54, 1999.
[40] D. Wagner, M. Thumm, and W. Kasparek, "Hybrid modes in highly oversized corrugated rectangular waveguides," Int. J. Infrared and Millimeter Waves, vol. 20, pp. 567-581, 1999.
[41] H. Hahn, "On the analysis of periodic waveguide discontinuities by modal field matching," Int. J. Electronics and Comm., AEU, vol. 32, pp. 81-85, 1978.
[42] J. Esteban and J. M. Rebollar, "Characterization of corrugated waveguides by modal analysis," IEEE Trans. Microwave Theory Tech., vol. 39, pp. 937-943, 1991.
[43] J. Y. Choe and H. S. Uhm, "Theory of gyrotron amplifiers in disc or helix-loaded waveguides," Int. J. Electronics, vol. 53, pp. 729-741, 1982.
[44] A. W. Fliflet, "Linear and non-linear theory of the Doppler-shifted cyclotron resonance maser based on TE and TM waveguide modes," Int. J. Electronics, vol. 61, pp. 1049-1080, 1986.