Search results for: 2-DOF model
6619 Mapping Knowledge Model Onto Java Codes
Authors: B.A.Gobin, R.K.Subramanian
Abstract:
This paper gives an overview of the mapping mechanism of SEAM-a methodology for the automatic generation of knowledge models and its mapping onto Java codes. It discusses the rules that will be used to map the different components in the knowledge model automatically onto Java classes, properties and methods. The aim of developing this mechanism is to help in the creation of a prototype which will be used to validate the knowledge model which has been generated automatically. It will also help to link the modeling phase with the implementation phase as existing knowledge engineering methodologies do not provide for proper guidelines for the transition from the knowledge modeling phase to development phase. This will decrease the development overheads associated to the development of Knowledge Based Systems.Keywords: KBS, OWL, ontology, knowledge models
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13886618 Mathematical Model for the Transmission of Leptospirosis in Juvennile and Adults Humans
Authors: P. Pongsumpun
Abstract:
Leptospirosis occurs worldwide (except the poles of the earth), urban and rural areas, developed and developing countries, especially in Thailand. It can be transmitted to the human by rats through direct and indirect ways. Human can be infected by either touching the infected rats or contacting with water, soil containing urine from the infected rats through skin, eyes and nose. The data of the people who are infected with this disease indicates that most of the patients are adults. The transmission of this disease is studied through mathematical model. The population is separated into human and rat. The human is divided into two classes, namely juvenile and adult. The model equation is constructed for each class. The standard dynamical modeling method is then used for analyzing the behaviours of solutions. In addition, the conditions of the parameters for the disease free and endemic states are obtained. Numerical solutions are shown to support the theoretical predictions. The results of this study guide the way to decrease the disease outbreak.Keywords: Adult human, juvenile human, leptospirosis, mathematical model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25916617 Cultivating a Successful Academic Career in Higher Education Institutes: The 10 X C Model
Authors: S. Zamir
Abstract:
The modern era has brought with it significant organizational changes. These changes have not bypassed the academic world, and along with the old academic bonds that include a world of knowledge and ethics, academic faculty members are required more than ever not only to survive in the academic world, but also to thrive and flourish and position themselves as modern and opinionated academicians. Based upon the writings of organizational consultants, the article suggests a 10 X C model for cultivating an academic backbone, as well as emphasizing its input to the professional growth of university and college academics: Competence, Calculations of pain & gain, Character, Commitment, Communication, Curiosity, Coping, Courage, Collaboration and Celebration.
Keywords: Academic career, academicians, higher education, the 10xC Model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9586616 Applying Gibbs Sampler for Multivariate Hierarchical Linear Model
Authors: Satoshi Usami
Abstract:
Among various HLM techniques, the Multivariate Hierarchical Linear Model (MHLM) is desirable to use, particularly when multivariate criterion variables are collected and the covariance structure has information valuable for data analysis. In order to reflect prior information or to obtain stable results when the sample size and the number of groups are not sufficiently large, the Bayes method has often been employed in hierarchical data analysis. In these cases, although the Markov Chain Monte Carlo (MCMC) method is a rather powerful tool for parameter estimation, Procedures regarding MCMC have not been formulated for MHLM. For this reason, this research presents concrete procedures for parameter estimation through the use of the Gibbs samplers. Lastly, several future topics for the use of MCMC approach for HLM is discussed.
Keywords: Gibbs sampler, Hierarchical Linear Model, Markov Chain Monte Carlo, Multivariate Hierarchical Linear Model
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18736615 Evolutionary Techniques for Model Order Reduction of Large Scale Linear Systems
Authors: S. Panda, J. S. Yadav, N. P. Patidar, C. Ardil
Abstract:
Recently, genetic algorithms (GA) and particle swarm optimization (PSO) technique have attracted considerable attention among various modern heuristic optimization techniques. The GA has been popular in academia and the industry mainly because of its intuitiveness, ease of implementation, and the ability to effectively solve highly non-linear, mixed integer optimization problems that are typical of complex engineering systems. PSO technique is a relatively recent heuristic search method whose mechanics are inspired by the swarming or collaborative behavior of biological populations. In this paper both PSO and GA optimization are employed for finding stable reduced order models of single-input- single-output large-scale linear systems. Both the techniques guarantee stability of reduced order model if the original high order model is stable. PSO method is based on the minimization of the Integral Squared Error (ISE) between the transient responses of original higher order model and the reduced order model pertaining to a unit step input. Both the methods are illustrated through numerical example from literature and the results are compared with recently published conventional model reduction technique.
Keywords: Genetic Algorithm, Particle Swarm Optimization, Order Reduction, Stability, Transfer Function, Integral Squared Error.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27296614 Multiple Targets Classification and Fuzzy Logic Decision Fusion in Wireless Sensor Networks
Authors: Ahmad Aljaafreh
Abstract:
This paper proposes a hierarchical hidden Markov model (HHMM) to model the detection of M vehicles in a wireless sensor network (WSN). The HHMM model contains an extra level of hidden Markov model to model the temporal transitions of each state of the first HMM. By modeling the temporal transitions, only those hypothesis with nonzero transition probabilities needs to be tested. Thus, this method efficiently reduces the computation load, which is preferable in WSN applications.This paper integrates several techniques to optimize the detection performance. The output of the states of the first HMM is modeled as Gaussian Mixture Model (GMM), where the number of states and the number of Gaussians are experimentally determined, while the other parameters are estimated using Expectation Maximization (EM). HHMM is used to model the sequence of the local decisions which are based on multiple hypothesis testing with maximum likelihood approach. The states in the HHMM represent various combinations of vehicles of different types. Due to the statistical advantages of multisensor data fusion, we propose a heuristic based on fuzzy weighted majority voting to enhance cooperative classification of moving vehicles within a region that is monitored by a wireless sensor network. A fuzzy inference system weighs each local decision based on the signal to noise ratio of the acoustic signal for target detection and the signal to noise ratio of the radio signal for sensor communication. The spatial correlation among the observations of neighboring sensor nodes is efficiently utilized as well as the temporal correlation. Simulation results demonstrate the efficiency of this scheme.
Keywords: Classification, decision fusion, fuzzy logic, hidden Markov model
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 62516613 Kinetic model and Simulation Analysis for Propane Dehydrogenation in an Industrial Moving Bed Reactor
Authors: Chin S. Y., Radzi, S. N. R., Maharon, I. H., Shafawi, M. A.
Abstract:
A kinetic model for propane dehydrogenation in an industrial moving bed reactor is developed based on the reported reaction scheme. The kinetic parameters and activity constant are fine tuned with several sets of balanced plant data. Plant data at different operating conditions is applied to validate the model and the results show a good agreement between the model predictions and plant observations in terms of the amount of main product, propylene produced. The simulation analysis of key variables such as inlet temperature of each reactor (Tinrx) and hydrogen to total hydrocarbon ratio (H2/THC) affecting process performance is performed to identify the operating condition to maximize the production of propylene. Within the range of operating conditions applied in the present studies, the operating condition to maximize the propylene production at the same weighted average inlet temperature (WAIT) is ΔTinrx1= -2, ΔTinrx2= +1, ΔTinrx3= +1 , ΔTinrx4= +2 and ΔH2/THC= -0.02. Under this condition, the surplus propylene produced is 7.07 tons/day as compared with base case.Keywords: kinetic model, dehydrogenation, simulation, modeling, propane
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 44426612 Catchment Yield Prediction in an Ungauged Basin Using PyTOPKAPI
Authors: B. S. Fatoyinbo, D. Stretch, O. T. Amoo, D. Allopi
Abstract:
This study extends the use of the Drainage Area Regionalization (DAR) method in generating synthetic data and calibrating PyTOPKAPI stream yield for an ungauged basin at a daily time scale. The generation of runoff in determining a river yield has been subjected to various topographic and spatial meteorological variables, which integers form the Catchment Characteristics Model (CCM). Many of the conventional CCM models adapted in Africa have been challenged with a paucity of adequate, relevance and accurate data to parameterize and validate the potential. The purpose of generating synthetic flow is to test a hydrological model, which will not suffer from the impact of very low flows or very high flows, thus allowing to check whether the model is structurally sound enough or not. The employed physically-based, watershed-scale hydrologic model (PyTOPKAPI) was parameterized with GIS-pre-processing parameters and remote sensing hydro-meteorological variables. The validation with mean annual runoff ratio proposes a decent graphical understanding between observed and the simulated discharge. The Nash-Sutcliffe efficiency and coefficient of determination (R²) values of 0.704 and 0.739 proves strong model efficiency. Given the current climate variability impact, water planner can now assert a tool for flow quantification and sustainable planning purposes.
Keywords: Ungauged Basin, Catchment Characteristics Model, Synthetic data, GIS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13146611 Energy Map Construction using Adaptive Alpha Grey Prediction Model in WSNs
Authors: Surender Kumar Soni, Dhirendra Pratap Singh
Abstract:
Wireless Sensor Networks can be used to monitor the physical phenomenon in such areas where human approach is nearly impossible. Hence the limited power supply is the major constraint of the WSNs due to the use of non-rechargeable batteries in sensor nodes. A lot of researches are going on to reduce the energy consumption of sensor nodes. Energy map can be used with clustering, data dissemination and routing techniques to reduce the power consumption of WSNs. Energy map can also be used to know which part of the network is going to fail in near future. In this paper, Energy map is constructed using the prediction based approach. Adaptive alpha GM(1,1) model is used as the prediction model. GM(1,1) is being used worldwide in many applications for predicting future values of time series using some past values due to its high computational efficiency and accuracy.Keywords: Adaptive Alpha GM(1, 1) Model, Energy Map, Prediction Based Data Reduction, Wireless Sensor Networks
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18036610 Development of a Kinetic Model for the Photodegradation of 4-Chlorophenol using a XeBr Excilamp
Authors: M. Gomez, M. D. Murcia, E. Gomez, J. L. Gomez, N. Christofi
Abstract:
Excilamps are new UV sources with great potential for application in wastewater treatment. In the present work, a XeBr excilamp emitting radiation at 283 nm has been used for the photodegradation of 4-chlorophenol within a range of concentrations from 50 to 500 mg L-1. Total removal of 4-chlorophenol was achieved for all concentrations assayed. The two main photoproduct intermediates formed along the photodegradation process, benzoquinone and hydroquinone, although not being completely removed, remain at very low residual concentrations. Such concentrations are insignificant compared to the 4-chlorophenol initial ones and non-toxic. In order to simulate the process and scaleup, a kinetic model has been developed and validated from the experimental data.Keywords: 4-chlorophenol, excilamps, kinetic model, photodegradation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13886609 The Lymphocytes Number in the Blood of Kwashiorkor Rat Model Induced by Oral Immunization with 38-kDa Mycobacterium tuberculosis Protein
Authors: Novi Khila Firani, Elisa Nesdyaningtyas
Abstract:
Kwashiorkor is one of nutritional problem in Indonesia, which lead to decrease immune system. This condition causes susceptibility to infectious disease, especially tuberculosis. Development of new tuberculosis vaccine will be an important strategy to eliminate tuberculosis in kwashiorkor. Previous research showed that 38-kDa Mycobacterium tuberculosis protein is one of the potent immunogen. However, the role of oral immunization with 38- kDa Mycobacterium tuberculosis protein to the number of lymphocytes in the rat model of kwashiorkor is still unknown. We used kwashiorkor rat model groups with 4% and 2% low protein diet. Oral immunization with 38-kDa Mycobacterium tuberculosis protein given with 2 booster every week. The lymphocytes number were measured by flowcytometry. There was no significant difference between the number of lymphocytes in the normal rat group and the kwashiorkor rat groups. It may reveal the role of 38-kDa Mycobacterium tuberculosis protein as a potent immunogen that can increase the lymphocytes number from kwashiorkor rat model same as normal rat.Keywords: kwashiorkor rat, lymphocytes, 38-kDa Mycobacterium tuberculosis protein
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25116608 Modeling of Cross Flow Classifier with Water Injection
Authors: E. Pikushchak, J. Dueck, L. Minkov
Abstract:
In hydrocyclones, the particle separation efficiency is limited by the suspended fine particles, which are discharged with the coarse product in the underflow. It is well known that injecting water in the conical part of the cyclone reduces the fine particle fraction in the underflow. This paper presents a mathematical model that simulates the water injection in the conical component. The model accounts for the fluid flow and the particle motion. Particle interaction, due to hindered settling caused by increased density and viscosity of the suspension, and fine particle entrainment by settling coarse particles are included in the model. Water injection in the conical part of the hydrocyclone is performed to reduce fine particle discharge in the underflow. The model demonstrates the impact of the injection rate, injection velocity, and injection location on the shape of the partition curve. The simulations are compared with experimental data of a 50-mm cyclone.Keywords: Classification, fine particle processing, hydrocyclone, water injection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19586607 Analysis of the Diffusion Behavior of an Information and Communication Technology Platform for City Logistics
Authors: Giulio Mangano, Alberto De Marco, Giovanni Zenezini
Abstract:
The concept of City Logistics (CL) has emerged to improve the impacts of last mile freight distribution in urban areas. In this paper, a System Dynamics (SD) model exploring the dynamics of the diffusion of a ICT platform for CL management across different populations is proposed. For the development of the model two sources have been used. On the one hand, the major diffusion variables and feedback loops are derived from a literature review of existing diffusion models. On the other hand, the parameters are represented by the value propositions delivered by the platform as a response to some of the users’ needs. To extract the most important value propositions the Business Model Canvas approach has been used. Such approach in fact focuses on understanding how a company can create value for her target customers. These variables and parameters are thus translated into a SD diffusion model with three different populations namely municipalities, logistics service providers, and own account carriers. Results show that, the three populations under analysis fully adopt the platform within the simulation time frame, highlighting a strong demand by different stakeholders for CL projects aiming at carrying out more efficient urban logistics operations.
Keywords: City logistics, simulation, system dynamics, business model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10336606 Featured based Segmentation of Color Textured Images using GLCM and Markov Random Field Model
Authors: Dipti Patra, Mridula J
Abstract:
In this paper, we propose a new image segmentation approach for colour textured images. The proposed method for image segmentation consists of two stages. In the first stage, textural features using gray level co-occurrence matrix(GLCM) are computed for regions of interest (ROI) considered for each class. ROI acts as ground truth for the classes. Ohta model (I1, I2, I3) is the colour model used for segmentation. Statistical mean feature at certain inter pixel distance (IPD) of I2 component was considered to be the optimized textural feature for further segmentation. In the second stage, the feature matrix obtained is assumed to be the degraded version of the image labels and modeled as Markov Random Field (MRF) model to model the unknown image labels. The labels are estimated through maximum a posteriori (MAP) estimation criterion using ICM algorithm. The performance of the proposed approach is compared with that of the existing schemes, JSEG and another scheme which uses GLCM and MRF in RGB colour space. The proposed method is found to be outperforming the existing ones in terms of segmentation accuracy with acceptable rate of convergence. The results are validated with synthetic and real textured images.
Keywords: Texture Image Segmentation, Gray Level Cooccurrence Matrix, Markov Random Field Model, Ohta colour space, ICM algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21746605 A Comparative Study into Observer based Fault Detection and Diagnosis in DC Motors: Part-I
Authors: Padmakumar S., Vivek Agarwal, Kallol Roy
Abstract:
A model based fault detection and diagnosis technique for DC motor is proposed in this paper. Fault detection using Kalman filter and its different variants are compared. Only incipient faults are considered for the study. The Kalman Filter iterations and all the related computations required for fault detection and fault confirmation are presented. A second order linear state space model of DC motor is used for this work. A comparative assessment of the estimates computed from four different observers and their relative performance is evaluated.Keywords: DC motor model, Fault detection and diagnosis Kalman Filter, Unscented Kalman Filter
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24986604 Model Reduction of Linear Systems by Conventional and Evolutionary Techniques
Authors: S. Panda, S. K. Tomar, R. Prasad, C. Ardil
Abstract:
Reduction of Single Input Single Output (SISO) continuous systems into Reduced Order Model (ROM), using a conventional and an evolutionary technique is presented in this paper. In the conventional technique, the mixed advantages of Mihailov stability criterion and continued fraction expansions (CFE) technique is employed where the reduced denominator polynomial is derived using Mihailov stability criterion and the numerator is obtained by matching the quotients of the Cauer second form of Continued fraction expansions. In the evolutionary technique method Particle Swarm Optimization (PSO) is employed to reduce the higher order model. PSO method is based on the minimization of the Integral Squared Error (ISE) between the transient responses of original higher order model and the reduced order model pertaining to a unit step input. Both the methods are illustrated through numerical example.
Keywords: Reduced Order Modeling, Stability, Continued Fraction Expansions, Mihailov Stability Criterion, Particle Swarm Optimization, Integral Squared Error.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19296603 A Prediction Method for Large-Size Event Occurrences in the Sandpile Model
Authors: S. Channgam, A. Sae-Tang, T. Termsaithong
Abstract:
In this research, the occurrences of large size events in various system sizes of the Bak-Tang-Wiesenfeld sandpile model are considered. The system sizes (square lattice) of model considered here are 25×25, 50×50, 75×75 and 100×100. The cross-correlation between the ratio of sites containing 3 grain time series and the large size event time series for these 4 system sizes are also analyzed. Moreover, a prediction method of the large-size event for the 50×50 system size is also introduced. Lastly, it can be shown that this prediction method provides a slightly higher efficiency than random predictions.
Keywords: Bak-Tang-Wiesenfeld sandpile model, avalanches, cross-correlation, prediction method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11786602 Condensation of Moist Air in Heat Exchanger Using CFD
Authors: Jan Barák, Karel Fraňa, Jörg Stiller
Abstract:
This work presents results of moist air condensation in heat exchanger. It describes theoretical knowledge and definition of moist air. Model with geometry of square canal was created for better understanding and postprocessing of condensation phenomena. Different approaches were examined on this model to find suitable software and model. Obtained knowledge was applied to geometry of real heat exchanger and results from experiment were compared with numerical results. One of the goals is to solve this issue without creating any user defined function in the applied code. It also contains summary of knowledge and outlook for future work.
Keywords: Condensation, exchanger, experiment, validation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 55926601 Hybrid Algorithm for Hammerstein System Identification Using Genetic Algorithm and Particle Swarm Optimization
Authors: Tomohiro Hachino, Kenji Shimoda, Hitoshi Takata
Abstract:
This paper presents a method of model selection and identification of Hammerstein systems by hybridization of the genetic algorithm (GA) and particle swarm optimization (PSO). An unknown nonlinear static part to be estimated is approximately represented by an automatic choosing function (ACF) model. The weighting parameters of the ACF and the system parameters of the linear dynamic part are estimated by the linear least-squares method. On the other hand, the adjusting parameters of the ACF model structure are properly selected by the hybrid algorithm of the GA and PSO, where the Akaike information criterion is utilized as the evaluation value function. Simulation results are shown to demonstrate the effectiveness of the proposed hybrid algorithm.Keywords: Hammerstein system, identification, automatic choosing function model, genetic algorithm, particle swarm optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15046600 A Physically-Based Analytical Model for Reduced Surface Field Laterally Double Diffused MOSFETs
Authors: M. Abouelatta, A. Shaker, M. El-Banna, G. T. Sayah, C. Gontrand, A. Zekry
Abstract:
In this paper, a methodology for physically modeling the intrinsic MOS part and the drift region of the n-channel Laterally Double-diffused MOSFET (LDMOS) is presented. The basic physical effects like velocity saturation, mobility reduction, and nonuniform impurity concentration in the channel are taken into consideration. The analytical model is implemented using MATLAB. A comparison of the simulations from technology computer aided design (TCAD) and that from the proposed analytical model, at room temperature, shows a satisfactory accuracy which is less than 5% for the whole voltage domain.
Keywords: LDMOS, MATLAB, RESURF, modeling, TCAD.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10656599 Fuzzy Control of Macroeconomic Models
Authors: Andre A. Keller
Abstract:
The optimal control is one of the possible controllers for a dynamic system, having a linear quadratic regulator and using the Pontryagin-s principle or the dynamic programming method . Stochastic disturbances may affect the coefficients (multiplicative disturbances) or the equations (additive disturbances), provided that the shocks are not too great . Nevertheless, this approach encounters difficulties when uncertainties are very important or when the probability calculus is of no help with very imprecise data. The fuzzy logic contributes to a pragmatic solution of such a problem since it operates on fuzzy numbers. A fuzzy controller acts as an artificial decision maker that operates in a closed-loop system in real time. This contribution seeks to explore the tracking problem and control of dynamic macroeconomic models using a fuzzy learning algorithm. A two inputs - single output (TISO) fuzzy model is applied to the linear fluctuation model of Phillips and to the nonlinear growth model of Goodwin.Keywords: fuzzy control, macroeconomic model, multiplier - accelerator, nonlinear accelerator, stabilization policy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19966598 Mathematical Model for the Transmission of Two Plasmodium Malaria
Authors: P. Pongsumpun
Abstract:
Malaria is transmitted to the human by biting of infected Anopheles mosquitoes. This disease is a serious, acute and chronic relapsing infection to humans. Fever, nausea, vomiting, back pain, increased sweating anemia and splenomegaly (enlargement of the spleen) are the symptoms of the patients who infected with this disease. It is caused by the multiplication of protozoa parasite of the genus Plasmodium. Plasmodium falciparum, Plasmodium vivax, Plasmodium malariae and Plasmodium ovale are the four types of Plasmodium malaria. A mathematical model for the transmission of Plasmodium Malaria is developed in which the human and vector population are divided into two classes, the susceptible and the infectious classes. In this paper, we formulate the dynamical model of Plasmodium falciparum and Plasmodium vivax malaria. The standard dynamical analysis is used for analyzing the behavior for the transmission of this disease. The Threshold condition is found and numerical results are shown to confirm the analytical results.Keywords: Dynamical analysis, Malaria, mathematical model, threshold condition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16726597 Estimating Saturated Hydraulic Conductivity from Soil Physical Properties using Neural Networks Model
Authors: B. Ghanbarian-Alavijeh, A.M. Liaghat, S. Sohrabi
Abstract:
Saturated hydraulic conductivity is one of the soil hydraulic properties which is widely used in environmental studies especially subsurface ground water. Since, its direct measurement is time consuming and therefore costly, indirect methods such as pedotransfer functions have been developed based on multiple linear regression equations and neural networks model in order to estimate saturated hydraulic conductivity from readily available soil properties e.g. sand, silt, and clay contents, bulk density, and organic matter. The objective of this study was to develop neural networks (NNs) model to estimate saturated hydraulic conductivity from available parameters such as sand and clay contents, bulk density, van Genuchten retention model parameters (i.e. r θ , α , and n) as well as effective porosity. We used two methods to calculate effective porosity: : (1) eff s FC φ =θ -θ , and (2) inf φ =θ -θ eff s , in which s θ is saturated water content, FC θ is water content retained at -33 kPa matric potential, and inf θ is water content at the inflection point. Total of 311 soil samples from the UNSODA database was divided into three groups as 187 for the training, 62 for the validation (to avoid over training), and 62 for the test of NNs model. A commercial neural network toolbox of MATLAB software with a multi-layer perceptron model and back propagation algorithm were used for the training procedure. The statistical parameters such as correlation coefficient (R2), and mean square error (MSE) were also used to evaluate the developed NNs model. The best number of neurons in the middle layer of NNs model for methods (1) and (2) were calculated 44 and 6, respectively. The R2 and MSE values of the test phase were determined for method (1), 0.94 and 0.0016, and for method (2), 0.98 and 0.00065, respectively, which shows that method (2) estimates saturated hydraulic conductivity better than method (1).Keywords: Neural network, Saturated hydraulic conductivity, Soil physical properties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25606596 Development of Manufacturing Simulation Model for Semiconductor Fabrication
Authors: Syahril Ridzuan Ab Rahim, Ibrahim Ahmad, Mohd Azizi Chik, Ahmad Zafir Md. Rejab, and U. Hashim
Abstract:
This research presents the development of simulation modeling for WIP management in semiconductor fabrication. Manufacturing simulation modeling is needed for productivity optimization analysis due to the complex process flows involved more than 35 percent re-entrance processing steps more than 15 times at same equipment. Furthermore, semiconductor fabrication required to produce high product mixed with total processing steps varies from 300 to 800 steps and cycle time between 30 to 70 days. Besides the complexity, expansive wafer cost that potentially impact the company profits margin once miss due date is another motivation to explore options to experiment any analysis using simulation modeling. In this paper, the simulation model is developed using existing commercial software platform AutoSched AP, with customized integration with Manufacturing Execution Systems (MES) and Advanced Productivity Family (APF) for data collections used to configure the model parameters and data source. Model parameters such as processing steps cycle time, equipment performance, handling time, efficiency of operator are collected through this customization. Once the parameters are validated, few customizations are made to ensure the prior model is executed. The accuracy for the simulation model is validated with the actual output per day for all equipments. The comparison analysis from result of the simulation model compared to actual for achieved 95 percent accuracy for 30 days. This model later was used to perform various what if analysis to understand impacts on cycle time and overall output. By using this simulation model, complex manufacturing environment like semiconductor fabrication (fab) now have alternative source of validation for any new requirements impact analysis.Keywords: Advanced Productivity Family (APF), Complementary Metal Oxide Semiconductor (CMOS), Manufacturing Execution Systems (MES), Work In Progress (WIP).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32266595 The Traditional Malay Textile (TMT)Knowledge Model: Transformation towards Automated Mapping
Authors: Syerina Azlin Md Nasir, Nor Laila Md Noor, Suriyati Razali
Abstract:
The growing interest on national heritage preservation has led to intensive efforts on digital documentation of cultural heritage knowledge. Encapsulated within this effort is the focus on ontology development that will help facilitate the organization and retrieval of the knowledge. Ontologies surrounding cultural heritage domain are related to archives, museum and library information such as archaeology, artifacts, paintings, etc. The growth in number and size of ontologies indicates the well acceptance of its semantic enrichment in many emerging applications. Nowadays, there are many heritage information systems available for access. Among others is community-based e-museum designed to support the digital cultural heritage preservation. This work extends previous effort of developing the Traditional Malay Textile (TMT) Knowledge Model where the model is designed with the intention of auxiliary mapping with CIDOC CRM. Due to its internal constraints, the model needs to be transformed in advance. This paper addresses the issue by reviewing the previous harmonization works with CIDOC CRM as exemplars in refining the facets in the model particularly involving TMT-Artifact class. The result is an extensible model which could lead to a common view for automated mapping with CIDOC CRM. Hence, it promotes integration and exchange of textile information especially batik-related between communities in e-museum applications.Keywords: automated mapping, cultural heritage, knowledgemodel, textile practice
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23066594 Modelling Extreme Temperature in Malaysia Using Generalized Extreme Value Distribution
Authors: Husna Hasan, Norfatin Salam, Mohd Bakri Adam
Abstract:
Extreme temperature of several stations in Malaysia is modelled by fitting the monthly maximum to the Generalized Extreme Value (GEV) distribution. The Mann-Kendall (MK) test suggests a non-stationary model. Two models are considered for stations with trend and the Likelihood Ratio test is used to determine the best-fitting model. Results show that half of the stations favour a model which is linear for the location parameters. The return level is the level of events (maximum temperature) which is expected to be exceeded once, on average, in a given number of years, is obtained.Keywords: Extreme temperature, extreme value, return level.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28396593 Reliable Face Alignment Using Two-Stage AAM
Authors: Sunho Ki, Daehwan Kim, Seongwon Cho, Sun-Tae Chung, Jaemin Kim, Yun-Kwang Hong, Chang Joon Park, Dongmin Kwon, Minhee Kang, Yusung Kim, Younghan Yoon
Abstract:
AAM (active appearance model) has been successfully applied to face and facial feature localization. However, its performance is sensitive to initial parameter values. In this paper, we propose a two-stage AAM for robust face alignment, which first fits an inner face-AAM model to the inner facial feature points of the face and then localizes the whole face and facial features by optimizing the whole face-AAM model parameters. Experiments show that the proposed face alignment method using two-stage AAM is more reliable to the background and the head pose than the standard AAM-based face alignment method.Keywords: AAM, Face Alignment, Feature Extraction, PCA
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14806592 No one Set of Parameter Values Can Simulate the Epidemics Due to SARS Occurring at Different Localities
Authors: Weerachi Sarakorn, I-Ming Tang
Abstract:
A mathematical model for the transmission of SARS is developed. In addition to dividing the population into susceptible (high and low risk), exposed, infected, quarantined, diagnosed and recovered classes, we have included a class called untraced. The model simulates the Gompertz curves which are the best representation of the cumulative numbers of probable SARS cases in Hong Kong and Singapore. The values of the parameters in the model which produces the best fit of the observed data for each city are obtained by using a differential evolution algorithm. It is seen that the values for the parameters needed to simulate the observed daily behaviors of the two epidemics are different.
Keywords: SARS, mathematical modelling, differential evolution algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14506591 A Scatter Search and Help Policies Approaches for a New Mixed Model Assembly Lines Sequencing Problem
Authors: N. Manavizadeh , M. Rabbani , H. Sotudian , F. Jolai
Abstract:
Mixed Model Production is the practice of assembling several distinct and different models of a product on the same assembly line without changeovers and then sequencing those models in a way that smoothes the demand for upstream components. In this paper, we consider an objective function which minimizes total stoppage time and total idle time and it is presented sequence dependent set up time. Many studies have been done on the mixed model assembly lines. But in this paper we specifically focused on reducing the idle times. This is possible through various help policies. For improving the solutions, some cases developed and about 40 tests problem was considered. We use scatter search for optimization and for showing the efficiency of our algorithm, experimental results shows behavior of method. Scatter search and help policies can produce high quality answers, so it has been used in this paper.Keywords: mixed model assembly lines, Scatter search, help policies, idle time, Stoppage time
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14936590 Determining of Stage-Discharge Relationship for Meandering Compound Channels Using M5 Decision Tree Model
Authors: Mehdi Kheradmand, Mehdi Azhdary Moghaddam, Abdolreza Zahiri, Khalil Ghorbani
Abstract:
In modeling phenomena, the presence of local conditions may cause the use of a general relation not to produce good results and thus fail to demonstrate local changes. If possible, identifying homogenous limits and providing simple linear relations for each of these limits will increase the accuracy of models. Accordingly, the models are divided into simpler and smaller problems to solve complicated problems, and the obtained answers will be combined. This simple idea can be applied to decision tree models. For this aim, the input data values are divided into several sub-intervals or sub-regions, and an appropriate model is extracted for an appropriate model or equation. This research proposes the M5 decision tree method as a solution to accurately compute the flow discharge in meandering compound channels.
Keywords: Stage-discharge relationship, decision tree, M5 decision tree model, meandering compound channels.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 249