Fuzzy Control of Macroeconomic Models
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33122
Fuzzy Control of Macroeconomic Models

Authors: Andre A. Keller

Abstract:

The optimal control is one of the possible controllers for a dynamic system, having a linear quadratic regulator and using the Pontryagin-s principle or the dynamic programming method . Stochastic disturbances may affect the coefficients (multiplicative disturbances) or the equations (additive disturbances), provided that the shocks are not too great . Nevertheless, this approach encounters difficulties when uncertainties are very important or when the probability calculus is of no help with very imprecise data. The fuzzy logic contributes to a pragmatic solution of such a problem since it operates on fuzzy numbers. A fuzzy controller acts as an artificial decision maker that operates in a closed-loop system in real time. This contribution seeks to explore the tracking problem and control of dynamic macroeconomic models using a fuzzy learning algorithm. A two inputs - single output (TISO) fuzzy model is applied to the linear fluctuation model of Phillips and to the nonlinear growth model of Goodwin.

Keywords: fuzzy control, macroeconomic model, multiplier - accelerator, nonlinear accelerator, stabilization policy.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1085599

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1996

References:


[1] A. Afshari and C. Georgescu, A fuzzy model-based optimal control strategy, Proceedings of the 1994 Symposium on Applied Computing:120- 125, 1994.
[2] R.G.D Allen , The engineer-s approach to economic models, Economica, 22(86):158-168, 1955.
[3] R.G.D Allen , "Macro-Economic Theory ; A Mathematical Treatment", London:MacMillan, 1967.
[4] K. J.A° stro¨m,"stochastic Control Theory", Mineola, N.Y.:Dover Publications, Inc.,1970.
[5] J. F.Baldwin and N.-C. F Guild, Modelling controllers using fuzzy relations, Kybernetes, 9:223-229, 1980.
[6] D.P. Bertsekas,"Dynamic Programming : Deterministic and Stochastic Models", Englewood Cliffs, NJ:Prentice-Hall Inc, 1987.
[7] M. Braae and D.-A. Rutherford, Fuzzy relations in a control setting, Kybernetes, 7:185-188, 1978.
[8] M. Braae and D.-A. Rutherford, Theoretical and Linguistic Aspects of the fuzzy logic controller, Automatica, 15:553-577, 1979.
[9] M. Braae and D.-A. Rutherford, Selection of parameters for a fuzzy logic controller, Fuzzy Sets and Systems, 2:185-199, 1979.
[10] A. C. Chiang, "Dynamic Optimization", New York:McGraw-Hill,Inc, 1972.
[11] S. Chopra, R. Mitra and V. Kumar, Fuzzy controller : choosing an appropriate and smallest rule set, International Journal of Computational Cognition, 3(4):73-79, 2005.
[12] B.-M. Chung and J.-H. Oh, Control of dynamic systems using fuzzy learning algorithm, Fuzzy Sets and Systems, 59:1-14, 1993.
[13] P. Cominos and N.Nunro, PID Controllers : recent tuning methods and design to specification, IEE Proc.-Control Theory, 149(1):46-53, 2002.
[14] P. Flaschel, R. Franke and W. Semmler, "Dynamic Macroeconomics : Instability, Fluctuations and Growth in Monetary Economics",Cambridge, Mass.:The MIT Press, 1997.
[15] G. Gabisch and H. W. Lorenz, "Business Cycle Theory : A survey of methods and concepts", New York:Springer-Verlag, 1989.
[16] G. Gandolfo , "Economic Dynamics : methods and models", Amsterdam:North-Holland, 1980.
[17] R. M. Goodwin, The nonlinear accelerator and the persistence of business cycles,Econometrica, 19(1):1-17,1951.
[18] M. M. Gupta,G. M. Trojan and Kiszka J. B., Controllability of fuzzy control systems,IEEE Transactions on Systems, Man, and Cybernetics, SMC-16(4):576-589,1986.
[19] M. I. Kamien and N. L. Schwartz, "Dynamic Optimization : The Calculus of Variations and Optimal Control in Economics and Management", 2nd ed., New York:North-Holland, 1991.
[20] T. Kitamoto, M. Saeki, K. Ando, CAD Package for Control System on Mathematica, IEEE, 448-451,1992.
[21] G.J. Klir and B. Yuan, "Fuzzy Sets and Fuzzy Logic: Theory and Applications", Upper Saddle River, N.J.:Prentice Hall, 1995.
[22] B. Kosko,"Neural networks and fuzzy systems : a dynamical systems approach to machine intelligence", Englewood Cliffs, NJ:Prentice-Hall Inc, 1992.
[23] C. C. Lee, Fuzzy logic in control systems: fuzzy logic controller-Parts I and II,IEEE Transactions on Systems, Man, and Cybernetics, 20(2):404- 435,1990.
[24] K. M. Passino and S. Yurkovich, "Fuzzy Control", Menlo Park, Ca:Addison-Wesley, 1998.
[25] A. W. Phillips, Stabilisation policy in a closed economy, Economic Journal, 64(266):290-323, 1954.
[26] A. W. Phillips,Stabilisation policy and the time-forms of lagged responses, Economic Journal, 67(266):265-277, 1957.
[27] J. D. Pitchford and S. J. Turnovsky,"Applications of Control Theory to Economic Analysis", Amsterdam:North-Holland, 1977.
[28] M. J. Rao,"Filtering and Control of Macroeconomic Systems", Amsterdam:North-Holland, 1987.
[29] R. Shone,"Economic Dynamics : Phase Diagrams and their Economic Application", 2nd ed. Cambridge UK:Cambridge University Press, 2002.
[30] M. S. Stachowicz and L. Beall, MATHEMATICA Fuzzy Logic, Wolfram Research, 2003. Available: http://www.wolfram.com.
[31] T. Terano, K. Asai and M. Sugeno, Fuzzy Systems and Its Applications, New York : Academic Press, Inc, 1987.
[32] The MathWorks inc., User-s Guide : "MATLAB 7", "Simulink 7", "Simulink Control Design", "Control System Design", "Fuzzy Logic Toolbox 2".
[33] S. J. Turnovsky, Macroeconomic analysis and Stabilization Policy, Cambridge : Cambridge University Press, 1977.
[34] A. Tustin, The Mechanism of Economic Systems, London:William Heinemann, LTD, 1953.
[35] Wolfram Research, "Control System Professional", 2nd edition, 2005.
[36] H. Ying , Fuzzy Control and Modeling : Analytical Foundations and Applications, New York:IEEE (The Institute of Electrical and Electronics Engineers) Press, 2000.
[37] H. -J. Zimmermann , Fuzzy Set Theory and its Application, Cambridge: Cambridge University Press, 1977.