

Abstract—This paper gives an overview of the mapping

mechanism of SEAM-a methodology for the automatic generation of
knowledge models and its mapping onto Java codes. It discusses the
rules that will be used to map the different components in the
knowledge model automatically onto Java classes, properties and
methods. The aim of developing this mechanism is to help in the
creation of a prototype which will be used to validate the knowledge
model which has been generated automatically. It will also help to
link the modeling phase with the implementation phase as existing
knowledge engineering methodologies do not provide for proper
guidelines for the transition from the knowledge modeling phase to
development phase. This will decrease the development overheads
associated to the development of Knowledge Based Systems.

Keywords—KBS, OWL, ontology, knowledge models

I. INTRODUCTION

HE area of KBS development has matured over the years.
It started with first-generation expert systems with a
single flat knowledge base and general reasoning engine,

typically built in a rapid-prototyping approach [1]. It was
essentially based on the process of knowledge transfer [2].
Maintenance of such systems was very difficult. Hence the
approach changed to a methodological approach which was
similar to that of software engineering with knowledge as its
main focus. Knowledge Engineering is no longer simply a
means of mining the knowledge from the expert. It now
encompasses methods and techniques for knowledge
acquisition, modelling, representation and use of knowledge
[3].
 However KBS development still remains complex and has
not gained success as compared to application developed in
the software engineering field. Methodologies like
CommonKADS [3], Protégé[4], MIKE [5], and MOKA [6]
and knowledge base development environments like IBROW3
[7] and EXPECT[8] all face criticisms.
However they face some common criticisms which are as
follows:
• Knowledge modelling is tedious because of it requires a

good understanding of AI concepts and also because of
knowledge acquisition problems. [9]

• Development overheads due to complexity of certain

methodologies and development environment. [9][10]

B. A. Gobin (phone: 230-4037893 e-mail: b.gobin@uom.ac.mu)
and R. K. Subramanian (phone: 230-4541041 fax: 230-4657144 e-mail:
rks@uom.ac.mu) are with the Department of Computer Science and
Engineering of the University of Mauritius.

• No Knowledge modelling standards – modelling is done
in an ad-hoc way based on the experience of the
knowledge engineer. [11]

• Concept of reuse through PSM is difficult to implement.
[10]

• Lack of guidelines for the proper transition from
knowledge modelling to implementation phase in the
methodology. [13][10][11]

 These criticisms are associated to the knowledge modelling
process which is considered to be one of the most important
activities for the development of KBS. To decrease some of
the problems associated with the development of KBS, we are
currently working on a methodology called SEAM that will
help in the modelling through the semi-automatic generation
of knowledge models and the mapping of these models onto
Java codes so as to create a prototype which will be used for
the validation of the knowledge model. The generation of the
Java codes will also help to decrease the complexities
associated with the transition from the knowledge modelling
to the implementation phase as once the prototype has been
developed it can be used as to develop the full version of the
KBS.
 The aim of this paper is to explain the rules for mapping of
the different components of the knowledge model on the
respective Java codes. It first gives a small overview of the
SEAM methodology and the ontology representing the
knowledge model before going into details about the various
mapping rules.

II. SEAM - A METHODOLOGY FOR THE KNOWLEDGE
MODELLING

 SEAM is a 4-step methodology that used for the semi-
automatic generation for knowledge models. The aims of the
methodology are to:
• decrease complexities associated with learning AI

concepts. The complexity of AI concepts is one of the
main reasons why development of KBS still remains
difficult. Since the generation of the knowledge model
and the mapping will be automated much of the learning
and development overheads will be decreased. There is
no need to learn AI concept in depth.

• have simple steps so that inexperienced knowledge
engineers or even domain experts can go through the
knowledge modeling process. We attempt to ease the
knowledge modelling process so that it no longer stays an
activity reserved only to the more privileged.

Mapping Knowledge Model Onto Java Codes

B.A.Gobin , R.K.Subramanian

T

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:4, No:1, 2010

1International Scholarly and Scientific Research & Innovation 4(1) 2010 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:4

, N
o:

1,
 2

01
0

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

00
85

.p
df

• standardize knowledge modeling process. There is a lack
of standard for modeling, lack of formalism for domain
knowledge, and lack of standards to represent rules. We
thus aim at bringing standards to the knowledge modeling
process through the use of semantics. The automatic
generation of the knowledge models will also contribute
to achieve this. Thus the modeling process will be done in
an ad-hoc way and will not depend on the experience of
the knowledge engineer.

• link knowledge model phase to implementation phase
through the mapping of the knowledge model onto Java
codes so that a quick prototype can be build which can be
used to validate the knowledge model

There are four distinct steps involved when using SEAM for
the modeling of KBS and its mapping onto Java codes. The
steps are as follow (Figure 1):

• Select the task that the KBS needs to do

The domain expert/knowledge engineer has to first select
the task for the application that needs to be developed.
The generation of the knowledge model is based on the
template knowledge models that are provided. We have
developed an ontology in OWL which is a library
containing the template knowledge models proposed by
CommonKADS. CommonKADS supports the partial
reuse of knowledge models to support the knowledge
modelling process. As compared to software engineering,
knowledge intensive task are limited and can be
categorised as shown in Figure 1. The template
knowledge models are generic knowledge models which
are representing different task which are then adapted to
the domain of application. It is therefore important that
the selected task is found in the template knowledge
model. Hence a task selection mechanism has been
developed so that the template knowledge model can be
extracted from the ontology
“templateknowledgemodel.owl” [14].

• Extract the template knowledge model
On selection of the task the generic knowledge model for
the particular task is extracted and generated. The
application ontology which is basically an empty rdf file,
“applicationknowledgemodel.owl”, is first generated.
Classes, properties and instances representing the
knowledge model for the selected task is then extracted
from “templateknowledgemodel.owl” and added to
“applicationknowledgemodel.owl”.

Fig. 1 Hierarchy of knowledge-intensive task types on the type of
problem being solved

• Adapt the knowledge model to the domain of

application
The template knowledge model contains a generic
domain schema which is independent from the
application domain knowledge schema. The generic
domain knowledge contains information about the
domain schema and the ‘ruletype’ that need to be created
for the knowledge model of a particular task. The domain
knowledge can be added to the application knowledge
model either manually or automatically using existing
ontologies representing the domain of application. The
aim of using domain ontologies is to allow the
knowledge engineer to reuse existing ontologies. Based
on these and input from the knowledge engineer/domain
expert the domain schema and the rules for the
application will be generated using the mechanism for
the semi-automatic generation of domain schema and the
mechanism for the semi-automatic generation of rules.
The application knowledge model
“applicationknowledgemodel.owl” is thus updated with
the domain knowledge through these mechanisms.

• Map the knowledge model onto Java codes
The aim of this mechanism is to ease the transition
from the analysis to the implementation phase. The
application ontology is mapped onto Java codes that
will be used to implement the knowledge based
system. The implementation team will have to go
through the finetuning of the codes and the
development of user interfaces of the KBS for input
and output purposes.

III. APPLICATION KNOWLEDGE MODEL IN OWL

The application knowledge is therefore obtained from the
template model ontology has been developed in
OWL[15]. It consists of the task, domain and inference
knowledge.

knowledge intensive tasks

planning

synthetic tasks

design

modelling

assignment

scheduling

analytic tasks

classification

assessment

monitoring

diagnosis

prediction

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:4, No:1, 2010

2International Scholarly and Scientific Research & Innovation 4(1) 2010 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:4

, N
o:

1,
 2

01
0

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

00
85

.p
df

Fig. 2 SEAM Methodology

This section gives an overview of the application knowledge
model generated for the task “assessment”.

A. Representing domain knowledge
Subclasses for the class “concepts” are as follows:
casedescription � concepts
casecriterion � concepts
casedecision � concepts
assessment_rule_type � rule_type

The instances of assessment_concepts contain all the concepts
that are required for the “assessment” task. Table 1 contains
the different classes that are used to represent the domain
knowledge, the properties of the classes and some example of
the instances.

TABLE I PROPERTIES AND INSTANCES OF CLASSES REPRESENTING THE
DOMAIN KNOWLEDGE

Class concepts rule_type
Propertie
s

 specification (DP)

 specification (DP)
 has_concept1 (OP)
 has_concept2(OP)

Instances e.g. instances of class

“assessment_concepts” :
 applicant
 case_criterion
 case_decision

e.g. instances of class
“assessment_relation” :

 application

B. Representing the inference knowledge
 The class “inference” has as subclasses the different
inferences that are found in the catalogue provided by

CommonKADS. The subclasses are defined based on general
inferences. Several task methods can call inferences bearing
the same name e.g. the inference “select” is called in the task
method for “assessment” and “diagnosis”. Therefore in our
ontology representing the application knowledge model, we
will have class “select” which is a subclass of the class
“inference” which h“assessmentselect” which is the
inference that will be called when modelling for the task
“assessment”. The same applies for other inferences which
are called in different task methods e.g. inference “specify.
Subclasses for the classes “inference”, “role” and “statement”
are as follows:

abstract � inference
match � inference
assessment_role � role
assessment_statement � statement

Table 2 contains the different classes that are used to represent
the inference knowledge, the properties of the classes and
some example of the instances.

C. Task Knowledge represented in OWL
Each knowledge intensive task as per CommonKADS

catalogue is represented as subclass of the main class task.
The subclass of the main class “task” in the application
knowledge modele is: assessment � task. Subtasks of the
knowledge intensive task are then instances of the subclass
created. E.g. for the knowledge intensive task assessment has
two subtask : abstractcase and matchcase. Therefore A
subclass “assessment” is created which has as instance
“abstractcase” and “matchcase”. The same applies for all

Java
classes
&
Jess
files for
KBS

Extract Task

SELECT EXTRACT ADAPT MAP

Otkm

Select Task

predefined
list of tasks Extract generic

Knowledge
 model

Adapt Domain

Adapt Rules

Manual
Enhancement

Map Ontology
onto
Java & Jess

Oappl

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:4, No:1, 2010

3International Scholarly and Scientific Research & Innovation 4(1) 2010 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:4

, N
o:

1,
 2

01
0

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

00
85

.p
df

other components of the knowledge model except for
inferences e.g. to represent task methods we have a class
“taskmethod” which has a subclass “assessmenttaskmethod”
and instances “abstactmethod” and “matchmethod”.

Table 3 contains the different classes that are used to represent
the task knowledge, the properties of the classes and some
example of the instances.

TABLE II PROPERTIES AND INSTANCES OF CLASSES REPRESENTING THE
INFERENCE KNOWLEDGE

Class Inference role
Properties has_input_role(OP)

 has_output_role(OP)
 has_static_role(OP)
 specifications(DP)

 type (OP)
 domain_mapping(OP)

Instances e.g. instances of class
“abstract” :

 assessment_
abstract

e.g. instances of class
“assessment_role” :

 abstracted_case
 abstraction_knowledge
 case_description

IV. RULES FOR MAPPING KNOWLEDGE MODEL
ONTO JAVA CODES

In this section we discuss the different rules for the
mapping of the different components of the knowledge model
onto Java codes. We take as case study the “housing
assessment” example found in [3].

A. Rules for Creating Java Package

The different java packages for the application will be built
based on the names of the main classes found in the
application knowledge model. Different directories bearing
the name of the classes are created i.e. “task”, “taskmethod”,
“inference”, “role”, “controlstructure”, “concepts”, “relation”,
“ruletype”. Not all them will be however required e.g.
controlstructure, relation and ruletype will not be required.
But since we do not want to hardcode which package are
needed Rule 1 applies to all main OWL class. All
unnecessary packages directories can be deleted afterwards.

 This package is necessary as it will contain all the classes
that will be required to run the Jess Engine for different
inferences. This is not defined at modeling level. It is to be
noted that irrespective of what type of task the application
knowledge model is based on, the creation process of
packages will always be same.

Figure 3: Packages created

Fig. 1 shows all the java packages that will be created

B. Rules for Mapping Domain Knowledge

Java classes will be created for subclasses and instances of the
OWL class “concept”. For the “assessment” example, the
following Java classes are created for the OWL class:
“casedescription”, “casecriteria” and “casedecision” i.e. the
following java files will be created “casedescription.java”,
“casecriteria.java” and “casedecision.java”.

Java classes will also be created for the instances of the
classes. E.g. rentfitsincome which is an instance of the class
“residencecriterion” in OOaappppll will be mapped on the Java class
“RentFitsIncome.java” and will be a subclass of
“ResidenceCriterion.java” . Figure 4 gives the list of all the
classes created based on the domain knowledge for the
“housing

public class RentFitsIncome extends ResidenceCriterion {}

TABLE III PROPERTIES AND INSTANCES OF CLASSES REPRESENTING TASK KNOWLEDGE

Class Task TaskMethod Control
Structure

Statement

Properties goal (DP)
 has_input_role (OP)
 has_output_role (OP)
 has_task_method (OP)
 has_order

 has_inference(OP)
 has_control_structure (OP)
 has_intermediate_role (OP)

 has_statement (OP)

 has_action(DP)
 has_statement_order (OP)
 has_condition_ inference(OP)
 has_control_condition (OP)
 has_action_inference (OP)
 has_control_structure (OP)
 has_control_loop(OP)

Instances e.g. instances of class
“assessment” :

 abstract_case
 match_case

e.g. instances of class
“assessment_method” :

 abstract_case
 match_case

e.g. instances of class
“assessment_cs” :

 abstract_cs
 match_cs

e.g. instances of class “abstract”
 abstracted_case

 assessment_
statement1

Rule 1: The main classes in the OOaappppll aarree uusseedd ttoo ccrreeaattee
eeqquuiivvaalleenntt jjaavvaa ppaacckkaaggeess

Rule 2: A package is created to run the Jess Engine

Rule 3: Create Java classes for all classes and instances
of the OWL class “concept” found in OOaappppll

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:4, No:1, 2010

4International Scholarly and Scientific Research & Innovation 4(1) 2010 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:4

, N
o:

1,
 2

01
0

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

00
85

.p
df

Figure 4 shows all the java classes that will be created to
represent concepts.

Fig. IV Java classes in “concept” package

 The methods to “get” and “set” properties associated to a
concept will also be created based on the properties in the
OWL knowledge model.

 The SWRL rules will be mapped into Jess rules in “.clp”
files. These “.clp” files will be called by the Jess engine.

C. Rules for Mapping Inference Knowledge

 Java classes are created for each instance of the “inference”

class. To carry out the “assessment” task there are five
inferences (Table 2). Therefore five java classes will be
created namely : “abstract.java”, “evaluate.java”,
“select.java”, “specify.java” and “match.java” as shown in
Figure 5. Each inference has input, output and static roles.
These roles will be set as input and output parameters of the
methods associated to the class. E.g. for the “abstract”
inference.

public class Abstract1 {
 public CaseDescription Abstract1(CaseDescription

casedescription, CaseDescription abstractedcase, String
staticknowledge) }

Figure 4: Classes created in “inference” package

D. Rules for Mapping Task Knowledge

 Java classes are created for the subclasses and instances of
the class “task” and “taskmethod” found in OOaappppll. E.g. for
“assessment” task the Java classes will be created as shown in
Figure 4.

Fig. 5 Classes created in “task” and “taskmethod” packages

 The instance class “task” in the OWL file has an object
property “has_method” which has as value the name of the
corresponding task method.

Task methods either call a particular subtask or a series of
inferences depending of whether they are represented as a
subclass or an instance in OOaappppll. If it is a subclass then, it will
call subtasks, which are the instances of the class “task” in
OOaappppll. The different subtasks are called based on the order
which can be obtained from “has_order” property of the class
“task” in OOaappppll.

On the other hand if the java file represents instances of the
class “ttaasskkmmeetthhoodd”” iinn OOaappppll, then the java file will contain all
the statements of the control structure associated to it. The
control structure associated to it is obtained from the value of
the property “has_control_stucture. The statements in each
control structure will be mapped onto Java codes. Hence

Rule 5: SRWL rules are mapped onto Jess rules

Rule 4: Create Java classes for all classes and instances
of the OWL class “concept” found in OOaappppll

Rule 6: Instances of the class “inference” in OOaappppll are
mapped onto Java classes and the values of the properties
“has_input_role”, “has_output_role”, “has_static_role” are
mapped as input and output parameters of the methods of
the class.

Rule 7: Java classes are created for subclasses and
instances of the following classes: “task”, “taskmethod”

Rule 9: TaskMethods will either call a subtask or will
execute one or a series of inferences

Rule 8: Each “task” will call a “taskmethod”

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:4, No:1, 2010

5International Scholarly and Scientific Research & Innovation 4(1) 2010 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:4

, N
o:

1,
 2

01
0

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

00
85

.p
df

inferences will be called in the task methods as defined in the
statements.

V. DISCUSSION AND FUTURE WORKS
 Before coming to the mapping rules, a test KBS was built in
Java as well as the knowledge model was created in OWL for
“housing assessment” task, i.e. assessing whether someone is
eligible to get a house based on certain predefined criteria. We
then proceeded with establishing the rules for the mapping
from OWL to Java to see to what extent complete automation
is possible based on the rules that we have conceptualized.
Therefore the rules for the mapping mechanism are based on
the “assessment” task. We believe that the mapping rules will
remain the same for all other types of knowledge intensive
task, as long as the knowledge model follow the format
required for mapping. However we shall test the mapping
with other tasks once all the rules have been implemented.
Also since we are still at the conceptualization phase, some
rules may be subject to slight changes as we proceed with the
development mechanism.
 Another interesting aspect of this mapping approach is that
reuse is possible. Since the mapping is modular, and the
application knowledge model is generic to a great extent –
only the domain knowledge changes, the generated Java codes
can be reused. If a knowledge engineer has already built a
“Housing Assessment” application for a particular situation
and now needs to build another “assessment” application,
changes can normally be done in the domain package only. It
thus decreases development overheads and cost and saves
time.
 We have already started the mapping process and Rule 1
and Rule 2. We are now going ahead the implementation of
the other rules. We believe that the difficulty will lie mainly in
the implementation of the control structures and the Jess files.
Since we want to maximize automation we want to develop a
completely generic approach for the mapping of the control
structures too. To what extent the rules we are putting forward
will work can only be known when we start working on the
rules for mapping the task knowledge.

REFERENCES
[1] P. Speel, A.T Schreiber., W Van Joolingen., Van Heijstg, and J.Beijer

G.,. “onceptual Modelling For Knowledge Based Systems”
Encyclopedia Of Computer Science And Technology, Marcel Dekker
Inc. New York, 2001.

[2] R. Studer,, V.R. Benjamins, and D. Fensel,, “Knowledge
Engineering:Principles And Method”, Data & Knowledge Engineering,
1998, pp. 161-197.

[3] A. Th. Schreiber, J. Akkermans, A. Anjewierden, R. De Hoog, N.
Shadbolt, W. Van De Velde and B. Wielinga, Knowledge Engineering
and Management: The Commonkads Methodology, Mit Press, 2000.

[4] J. H. Gennari, M. A. Musen, R. W. Fergerson, W. E. Grosso, M.
Crubezy, H. Eriksson, N. F. Noy and Tu, S. W., “The Evolution Of
Protege: An Environment For Knowledge-Based Systems
Development”, International Journal Of Human Computer Studies,
58(1), 2003, pp. 89-123.

[5] Angele J., Fensel D., Landes D. And Studer R. 1998. “Developing
Knowledge Based Systems with Mike”, Journal Of Automated Software
Engineering, 5(4), 1998, pp.389-418.

[6] M. Callot, Methodology And Tools Oriented To Knowledge
Engineering Applications, Moka Public Report No.2, 1999 [Online].

Available From: Http://Www.Kbe.Conventry.Ac.Uk/Moka [Accessed
19 October 2009].

[7] D. Fensel, E. Motta, V. Benjamins, S. Decker, M. Gaspari, R.
Groenboom, W. Grosso , F. Van Harmelen, M. Musen, E. Plaza, G.
Schreiber, R. Studer, A. Ten and B. Wielinga,“An Intelligent Brokering
Service for Knowledge Component Reuse on the World-Wide Web”, In:
The 11th Banff Knowledge Acquisition for Knowledge-Based System
Workshop (KAW98), Banff, Canada, 1998.

[8] Y. Gil, J. Blythe, J. Kim And Ramachandran S., "Acquiring Procedural
Knowledge in EXPECT". In: Proceedings of AAAI 2000 Fall
Symposium on Learning How to Do Things, North Falmouth,
Massachusetts, AAAI, 3-5 November 2000.

[9] H. Knublauch, An Agile Development Methodology For Knowledge-
Based Systems Including A Java Framework For Knowledge Modeling
And Appropriate Tool Support, Dissertation (Phd Thesis), University Of
Ulm, 2002.

[10] CORSAR, D. and SLEEMAN, D. “KBS development through ontology
mapping and ontology driven acquisition” In Proceedings of the 4th
international Conference on Knowledge Capture, 28 – 31 October 2007
Whistler, BC, Canada, 2007, 3-30.

[11] M.S. Abdullah, A. Evans, I. Benest, R Paige and C. Kimble, “Modelling
Knowledge Based Systems Using the eXecutable Modelling
Framework(XMF)”, In: Proceedings of the 2004 IEEE, Conference on
Cybernetics and Intelligent Systems,1-3 December Singapore, IEEE,
2004,pp 1055-1060.

[12] D. Sleeman, T. Runchie and P. Gray, “Reuse: Revisiting Sisyphus-VT”.
In Staab, S and Svatek, V, Eds. Proceedings EKAW 2006 Conference
Podebrady, Czech Republic, 2006, pp 59-66.

[13] R. Benjamins, D. Fensel, C. Pierret-Golbreich, E. Motta, R. Studer, B.
Wielinga, M. Rousset. “Making knowledge engineering technology
work”. In Proc. of the 9th Int. Conf. on oSoftware Engineering and
Knowledge Engineering (SEKE-97), Madrid, Spain, 1997.

[14] B.A.Gobin, R.K.Subramanian, “An OWL Ontology for CommonKADS
Template Knowledge Model”. In Proc. of the International Conference
on Knowledge Systems Engineering (ICKSE), Rome, Italy, 2009.

[15] G. Antoniou, F and Van Harmelen, “Web Ontology Language: Owl”, In
Handbook On Ontologies In Information Systems, 2003, pp 67—92.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:4, No:1, 2010

6International Scholarly and Scientific Research & Innovation 4(1) 2010 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:4

, N
o:

1,
 2

01
0

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

00
85

.p
df

