
 

 

  
Abstract—Leptospirosis  occurs  worldwide  (except  the  

poles  of  the  earth),  urban  and  rural  areas,  developed  and  
developing  countries,   especially  in  Thailand.  It  can  be  
transmitted  to  the  human  by  rats  through  direct  and  indirect  
ways.  Human  can  be  infected  by  either  touching  the  infected  rats  
or  contacting  with  water,  soil  containing  urine  from  the  infected  
rats  through  skin,  eyes  and  nose. The  data  of  the  people  who  
are  infected  with  this  disease  indicates  that  most  of  the  
patients  are  adults. The transmission of this disease is studied 
through mathematical model.  The population is separated into human 
and  rat.  The  human  is  divided  into  two  classes,  namely  juvenile  
and  adult.  The model equation is constructed for each class.  The  
standard  dynamical  modeling  method  is  then  used  for  
analyzing  the  behaviours  of  solutions.  In  addition,  the  
conditions  of  the  parameters  for  the  disease  free  and  endemic  
states  are  obtained.  Numerical solutions are shown to support the 
theoretical predictions.  The results of  this  study guide  the  way  to  
decrease  the  disease outbreak.     
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I. INTRODUCTION 
EPTOSPIROSIS is an infectious disease caused by a type 
of bacteria called a spirochete. This disease is transmitted 

by many animals such as rats, skunks, opossums, raccoons, 
foxes, and other vermin. It is transferred though contacting 
with infected soil or water. The soil or water is contaminated 
with the waste products of an infected animal. People contract 
the disease by either ingesting contaminated food or water or 
by broken skin and mucous membrane (eyes, nose, sinuses, 
mouth) contact with the contaminated water or soil. 
Leptospirosis occurs around the world, but it is usually found 
in the tropical countries. There are 7 strains due to 
Leptospirosis, such as Leptospira  interrogans, Leptospira  
kirschneri,  Leptospira  noguchii,  Leptospira  borgpetersenii, 
Leptospira  santarosai,  Leptospira  weilii and  Leptospira  
inadai. Leptospirosis has emerged in Thailand since 1997, as a 
major health concern [1,2]. The characteristics of the patients 
due to Leptospirosis are high fever, headache, chills, muscle 
aches, conjunctivitis (red eyes), diarrhea, vomiting, and kidney 
or liver problems (which may include jaundice), anemia and, 
sometimes, rash. The duration of symptoms due to this disease 
may last from a few days to several weeks. After infected, 
some patients can be mild and without obvious symptom [3]-
[7].  The season and the environmental factors effect to the  
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outbreaks of this disease [8]. A deterministic model (consists 
of a set of differential equations) have a long tradition in the 
study of infectious diseases. In 2006, J.Holt and et al. 
constructed a mathematical model for the transmission of 
Leptospirosis in Tanzania [9]. In 2007, W.Triampo and et al. 
considered a deterministic SIR (S = Susceptible, I = Infected, 
R = Recovered) model for the transmission of leptospirosis in 
the Thai population but they did not consider the age group of 
the patients [10]. SIR model can be used for describing the 
transmission of many infectious diseases [11]. From the data 
of Leptospirosis patients during 2002 and 2009 in Thailand 
[12], we can see that there is the different number of cases 

 

 
Fig. 1 Reported cases of Leptospirosis in Thailand, year 2002-2010 

[12] 

In this paper, we consider the transmission of Leptospirosis 
in Thailand through mathematical modeling. The difference of 
transmission rate for this disease between juvenile and adult 
humans is considered. The basic reproductive number of this 
disease is analyzed. The alternative way for controlling the 
outbreak of this disease is introduced. 

II.  MATHEMATICAL MODEL 
We formulate the mathematical model of this disease by 

considering the dynamical equations for human and rats.The 
human is separated into two groups; juvenile and adult groups. 
Each group is divided into three sub-groups such as 
Susceptible(S), Infectious (I) and Recovered(R). The rat is 
divided into two sub-groups such as Susceptible(S) and 
Infectious (I) because the rat never recovers from infection. 
We assume that total human are rat populations are constant 
[13]. For our dynamical equations, the definitions of variables 
and parameters are given as follows: 
b is the birth rate of human population,  
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Adult  human,  juvenile  human,  leptospirosis, 

between juvenile and adults humans as shown in Fig. 1. 
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 d     is the death rate of human population, 
tN   is the total human population, 
JN   is the total juvenile human population, 
AN  is the total adult human population, 
RN  is the total rat population, 

 δ    is the transition rate from juvenile to adult humans, 
  s    is the recovery rate of human, 

Rl   is the birth rate of rat population, 

Rμ is the death rate of rat population, 
Jθ  is the transmission rate of Leptospirosis from rat to 

juvenile human populations, 
Aθ  is the transmission rate of Leptospirosis from rat to adult 

human populations, 
Rθ  is the transmission rate of Leptospirosis between rat 

populations, 

JS~   is the number of susceptible juvenile human populations, 

JI
~

  is the number of infectious juvenile human populations, 

JR~  is the number of recovered juvenile human populations, 

AS~  is the number of susceptible adult human populations, 

AI
~

 is the number of infectious adult human populations, 

AR~ is the number of recovered adult human populations, 
The transmission diagrams for Leptospirosis of human and rat 
populations are represented in figure 2 and figure 3, 
respectively. 
 

 
Fig. 2 The transmission diagram for human population 

 

 
Fig. 3 The transmission diagram for rat population 

The dynamical equations for human and rat populations are 
given as follows: 
 

JJJJt
J S~d)(δI~S~θbN

dt
S~d

+−−=               (1) 

JJJJ
J I~d)δ(sI~S~θ

dt
I~d

++−=                                 (2) 

JJ
J R~d)(δI~s

dt
R~d

+−=                      (3) 

JRJAJ
A S~d-I~S~θS~δ

dt
S~d

−=                 (4) 

AAAA
A I~d)δ(sI~S~θ

dt
I~d

++−=               (5) 

AA
A R~d)(δI~s

dt
R~d

+−=                  (6) 

JRRRRRR
R S~μ-I~S~θNl

dt
S~d

−=               (7) 

RRRRR
R I~μ-I~S~θ

dt
I~d

=                  (8) 

where AJt NNN += , JJJJ RI~S~N
(

++= ,       

AAAA RI~S~N
(

++=  and RRR I~S~N += .                      (9) 
   

The total human and rat populations are supposed to be 
constant. So the dynamical change of each populations equals 

to 0. Setting 0
dt

dN
dt

dN
dt

dN
dt

dN RAJt ==== , then db = ,

bN
N,

b
b

N
N

J

A

J

t δ
=

δ+
=  and RR μl = . We normalize our 

dynamical equations by setting 

JJJ /NS~S = , JJJ /NI~I = , JJJ /NR~R = , AAA /NS~S = , 

AAA /NI~I = , AAA /NR~R = , RRR /NS~S = and RRR /NI~I = , 
then the reduced equations become 

RRJJJ
J NISθ)S-δ)(1(d

dt
dS

−+=            (10) 

JRRJJ
J s)Iδ(d-NISθ

dt
dI

++=             (11) 

RRAAA
A NISθ-)Sd(1

dt
dS

−=             (12) 

AJRRAA
A d)I(s-dINISθ

dt
dI

++=           (13) 

2
RRRRRRR

R INθ)Iμ-N(θ
dt

dI
−=            (14) 

with the conditions  J J J A A AR 1 S I ,R 1 S I ,= − − = − −  

R RS 1 I= − .   

III. ANALYSIS OF MODEL 

A. Model 
To find the equilibrium states, we set the right hand side of 

equations (10) to (14) equal to zero. So the equilibrium states 
are 

i)  disease free state:           )(1,0,1,0,0E1 =      (15) 
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ii)  endemic disease state:    )I,I,S,I,(SE *
R

*
A

*
A

*
J

*
J2 =  (16) 

where 
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*
J
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+
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⎠
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+
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5
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R

*
A

Iη1
η
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R*
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δ+
θ

=η
d

NRJ
1 , 

δd
sη2 +

= , 
d
Nθη RA

3 = , 
sd

Nθη RA
4 +

=  and 

)ηs)(1(d
dηη

2

1
5 ++

= . 

 
The locally asymptotical stable of each equilibrium state is 

determined by the sign of eigenvalues for each equilibrium 
state. If all eigenvalues have negative real parts, then that 
equilibrium state is local stability [13]. The eigenvalues are 
obtained by solving the following characteristic equation 

 

                                                       
0)λIdet(J 5iC =−       (17) 

 
where 5I  is the identity matrix dimension 5 x 5 and iCJ is the 

Jacobian matrix of the steady state 2 1,i;iD = . For the disease 
free state )(1,0,1,0,0C1 = , the Jacobian matrix is given by  
 

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

−−
+−

−−
++−

−+−

=

)Nθ(d0000
Nθr)(d0d0
Nθ0d00

Nθ00s)δ(d0
Nθ000δ)(d

J

RR

RA

RA

RJ

RJ

1C  

The characteristic equation is 
0)Nθμs)(λdd)(λs)(λδdδ)(λd(λ RRR =−+++++++++  (18) 

The eigenvalues are  
 

dλ   s,δdλ   δ,dλ 321 −=−−−=−−= ,  s,dλ4 −−=     

RRR5 Nθμλ +−= .               (19) 
We can see that all eigenvalues have negative real parts for  

1G0 < ; where 
R

RR
0 μ

NθG = .            (20) 

In the same manner, for the endemic disease state 
)I,I,S,I,(SC *

R
*
A

*
A

*
J

*
J2 = ,  the Jacobian matrix is given by  

2

* *
J R R J R J
* *

J R R J R J
* *

C A R R A R A
* *

A R R A R A
*

R R R R

(d δ)-θN I 0 0 0 θN S
θN I (d δ s) 0 0 θN S

J 0 0 d-θ N I 0 θ N S
0 d θ N I (d r) θ N S
0 0 0 0 -μ θ N (1 2I )

⎛ ⎞− + −
⎜ ⎟

− + +⎜ ⎟
⎜ ⎟= − −
⎜ ⎟

− +⎜ ⎟
⎜ ⎟+ −⎝ ⎠

 

the characteristic equation is given by  

0.     )μNθ(λ )
θ
θμ

Nθds)(λds)(λδd)(λ
θ
θμ

Nθδd(λ RRR
R

AR
RA

R

JR
RJ =−+−+++++++−+++

                                   (21) 
The eigenvalues are  

R J
1 J R 2 3

R

μ θλ d δ θ N , λ d δ s,λ d s, 
θ

= − − − + = − − − = − −
 

R A
4 A R 5 R R R

R

μ θ
λ d θ N , λ θ N μ

θ
= − − + = − +       (22) 

The above eigenvalues have negative real parts for 1G0 > ; 

where 
R

RR
0 μ

NθG = .               (23) 

Therefore, we can conclude that the disease free state is 
locally asymptotical stable for 1G0 <  and the endemic 
disease state is locally asymptotical stable for 1G0 > , where 

R

RR
0 μ

NθG = .The basic reproductive number of the disease is 

evaluated from the averaging of the number of secondary case 
that one case can produce if he/she is introduced into a 
susceptible human. This number is represented as 0

'
0 GG = . 

B. Numerical Simulation 
In this paper, we are interested in the transmission of 

Leptospirosis between the human and rat populations. The 
different transmission rate of Leptosiposis to juvenile and 
adult humans is considered. The values of the parameters used 
in this study are as follows: d = 1/(365×70) per day 
corresponds to the life expectancy of 70 years for human 
population. s = 1/15 per day corresponds to the 15 days of the 
recovery for the human populations. δ = 1/(365×15) per day 
satisfies the 15 years of the transition from juvenile to adult 
human populations. )5.1365/(1μR ×= per day satisfies the 
life expectancy of 1.5 years for rat population. The other 
parameters are arbitary chosen as follows: the total juvenile, 
adult humans, transmission rate of Leptospirosis from rat to 
juvenile humans, transmission rate of Leptospirosis from rat to   
adult humans, transmission rate of Leptospirosis between rats 
are JN = 3,000, AN = 7,000, Jθ = 0.001, Aθ = 0.01 and Rθ = 
0.000001, respectively. 
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Fig. 4 Time series solutions of our dynamical equations. The 

parameters are d = 1/(365×70), s = 1/15, δ = 1/(365×15),
10.00   7,000,N  3,000,N  1.5),1/(365 JAJR ===×= θμ , 

0.05475.G  100,N  0.000001,θ  0.01,θ 0RRA ====  
 

We can see that the solutions approach to the disease free 
equilibrium state (1,01,0,0)  
 

 
Fig. 5 Time series solutions of our dynamical equations. The 

parameters are d = 1/(365×70), s = 1/15, δ = 1/(365×15),
)5.1365/(1μR ×= , JN = 3,000, AN = 7,000, Jθ = 0.001, Aθ = 

0.01, Rθ = 0.000001, RN = 50,000, 0G = 27.375. We can see that 
the solutions converge to the disease endemic state 

(0.0000046,0.0033,0.00000081,0.00059,0.96) 
 

From fig.5 and fig.6, we can see that the solutions converge 
to the disease free state and endemic disease state for 1G0 <  
and 1G0 > , respectively 
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Fig. 6  Bifurcation diagrams of (10)-(14) demonstrate the equilibrium 

solutions of susceptible, infectious juvenile humans, susceptible, 
infectious adult humans and infectious rat populations, respectively 
for the different values  of  0G  with d = 1/(365×70), s= = 1/15, δ = 

1/(365×15), )5.1365/(1μR ×= , JN = 3,000, AN = 7,000, Jθ = 

0.001, Aθ = 0.01, Rθ = 0.000001.  represents the stable 

solutions and   represents the unstable solutions. For 0G < 

1, 1E  will be stable. For 0G > 1, 2E  will be stable 

IV. CONCLUSION 
The basic reproductive number of the disease ( 0G ) is 

defined as follows: 
R

RR
0 μ

NθG = . From figure 6, if the basic 

reproductive number is higher, this means that one patient can 
produce the higher number of secondary cases. If the basic 
reproductive number is greater than one, the normalized 
susceptible juvenile and susceptible adult human decrease.The 
normalized infectious juvenile human, infectious adult human 
and infectious rat populations increase. The normalized 
infectious juvenile and adult human first increase to a peak 
and then decrease. This subsequent behavior occurs because  
there are enough susceptible juvenile human and adult human 
to be infected from infectious rat population. Furthermore, we 
compare the behaviors of time series of solutions when there 
is the different transmission rate  of Leptospirosis between rat  
populations. 

 

 
7a)                                         7b) 

Fig. 7 Time series solutions of our dynamical equations. The 
parameters are d = 1/(365×70), s = 1/15, δ = 1/(365×15),

)5.1365/(1μR ×= , JN = 3,000, AN = 7,000, Jθ = 0.001, 

 Aθ = 0.01, RN = 50,000 

7a)   Rθ = 0.000001, 0G = 27.375   7b)   Rθ = 0.00001, 0G = 273.75 
 

World Academy of Science, Engineering and Technology
International Journal of Mathematical and Computational Sciences

 Vol:6, No:12, 2012 

1643International Scholarly and Scientific Research & Innovation 6(12) 2012 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 M
at

he
m

at
ic

al
 a

nd
 C

om
pu

ta
tio

na
l S

ci
en

ce
s 

V
ol

:6
, N

o:
12

, 2
01

2 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/8
69

2.
pd

f



 

 

We can see that when there is the smaller transmission rate 
of Leptospirosis between rat populations, the basis 
reproductive number ( 0G ) is higher and the duration of 
reducing the outbreak for this disease is smaller. The basic 
reproductive numbers are produced to be the alternative way 
for decreasing the outbreak of the diseases [14,15]. The output 
of this study should introduce the way for controlling the 
outbreak of Leptospirosis.   
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