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Mathematical Model for the Transmission of
Leptospirosis in Juvennile and Adults Humans

P. Pongsumpun

Abstract—Leptospirosis  occurs  worldwide (except the
poles of the earth), urban and rural areas, developed and
developing countries, especially in Thailand. It can be
transmitted to the human by rats through direct and indirect
ways. Human can be infected by either touching the infected rats
or contacting with water, soil containing urine from the infected
rats through skin, eyes and nose. The data of the people who
are infected with this disease indicates that most of the
patients are adults. The transmission of this disease is studied
through mathematical model. The population is separated into human
and rat. The human is divided into two classes, namely juvenile

and adult. The model equation is constructed for each class. The
standard dynamical modeling method is then wused for
analyzing the behaviours of solutions. In addition, the

conditions of the parameters for the disease free and endemic
states are obtained. Numerical solutions are shown to support the
theoretical predictions. The results of this study guide the way to
decrease the disease outbreak.
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1. INTRODUCTION

EPTOSPIROSIS is an infectious disease caused by a type

of bacteria called a spirochete. This disease is transmitted
by many animals such as rats, skunks, opossums, raccoons,
foxes, and other vermin. It is transferred though contacting
with infected soil or water. The soil or water is contaminated
with the waste products of an infected animal. People contract
the disease by either ingesting contaminated food or water or
by broken skin and mucous membrane (eyes, nose, sinuses,
mouth) contact with the contaminated water or soil
Leptospirosis occurs around the world, but it is usually found
in the tropical countries. There are 7 strains due to
Leptospirosis, such as Leptospira interrogans, Leptospira
kirschneri, Leptospira noguchii, Leptospira borgpetersenii,
Leptospira santarosai, Leptospira weilii and Leptospira
inadai. Leptospirosis has emerged in Thailand since 1997, as a
major health concern [1,2]. The characteristics of the patients
due to Leptospirosis are high fever, headache, chills, muscle
aches, conjunctivitis (red eyes), diarrhea, vomiting, and kidney
or liver problems (which may include jaundice), anemia and,
sometimes, rash. The duration of symptoms due to this disease
may last from a few days to several weeks. After infected,
some patients can be mild and without obvious symptom [3]-
[7]. The season and the environmental factors effect to the
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outbreaks of this disease [8]. A deterministic model (consists
of a set of differential equations) have a long tradition in the
study of infectious diseases. In 2006, J.Holt and et al.
constructed a mathematical model for the transmission of
Leptospirosis in Tanzania [9]. In 2007, W.Triampo and et al.
considered a deterministic SIR (S = Susceptible, I = Infected,
R = Recovered) model for the transmission of leptospirosis in
the Thai population but they did not consider the age group of
the patients [10]. SIR model can be used for describing the
transmission of many infectious diseases [11]. From the data
of Leptospirosis patients during 2002 and 2009 in Thailand
[12], we can see that there is the different number of cases
between juvenile and adults humans as shown in Fig. 1.
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Fig. 1 Reported cases of Leptospirosis in Thailand, year 2002-2010
[12]

In this paper, we consider the transmission of Leptospirosis
in Thailand through mathematical modeling. The difference of
transmission rate for this disease between juvenile and adult
humans is considered. The basic reproductive number of this
disease is analyzed. The alternative way for controlling the
outbreak of this disease is introduced.

II. MATHEMATICAL MODEL

We formulate the mathematical model of this disease by
considering the dynamical equations for human and rats.The
human is separated into two groups; juvenile and adult groups.
Each group is divided into three sub-groups such as
Susceptible(S), Infectious (I) and Recovered(R). The rat is
divided into two sub-groups such as Susceptible(S) and
Infectious (I) because the rat never recovers from infection.
We assume that total human are rat populations are constant
[13]. For our dynamical equations, the definitions of variables
and parameters are given as follows:

b is the birth rate of human population,
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d is the death rate of human population,
Ny is the total human population,

Ny is the total juvenile human population,
Na is the total adult human population,

NR s the total rat population,
8 s the transition rate from juvenile to adult humans,
s is the recovery rate of human,

Ir is the birth rate of rat population,

Hr is the death rate of rat population,

0 is the transmission rate of Leptospirosis from rat to
juvenile human populations,

Oa is the transmission rate of Leptospirosis from rat to adult
human populations,

Or is the transmission rate of Leptospirosis between rat
populations,

S is the number of susceptible juvenile human populations,
L is the number of infectious juvenile human populations,

Ry is the number of recovered juvenile human populations,

Sa is the number of susceptible adult human populations,

Ia is the number of infectious adult human populations,

Ra is the number of recovered adult human populations,

The transmission diagrams for Leptospirosis of human and rat
populations are represented in figure 2 and figure 3,
respectively.
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Fig. 2 The transmission diagram for human population
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Fig. 3 The transmission diagram for rat population

The dynamical equations for human and rat populations are
given as follows:
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where Ny =Nj+N,, NJ=§J+TJ+§J,

NA=§A+TA+§A and NR=§R+TR' (9)

The total human and rat populations are supposed to be
constant. So the dynamical change of each populations equals
dNy _dN, _ dNg _0

dt dt dt ’

then b=d,

to 0. Setting dn,
dt

Ny b+d N, &

N b N, b

dynamical equations by setting

Sy = Sy/Ny, Iy = /Ny, Ry =Ry/Njy, S5 =Sp/Ny,

I =T, /Ny, Ry =R,/N,,Sg =Sg/Ngand Iy = Iz/Ng,

then the reduced equations become

and lg =pr. We normalize our

%:(d'FS)(l-SJ)—eJSJIRNR (10)
dI;
EZGJSJIRNR -(d+8+S)IJ (11)
d:_?zd(l_SA)'eASAIRNR (12)
dI,
TZGASAIRNR +dIJ -(S+d)IA (13)
dlp 2
Fz(eRNR -up)Ig —OrNRIg (14)
with the conditions R, =1-S,-I,,R, =1-S, -1,,
Sy =1-1, .
III. ANALYSIS OF MODEL
A.Model

To find the equilibrium states, we set the right hand side of
equations (10) to (14) equal to zero. So the equilibrium states
are

i) disease free state:

E, =(1,0,1,0,0) (15)
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it) endemic disease state: E, :(ST,I;,S*A,I*A,I;) (16)
where
. 1 . nilz . 1
SJ = PRERES B L RN SA = *
I+mlg (I+m)(I+mlR) I+n3lg
IZzI; 114* n Tls* ,Iif{:l— HR ,
l+mlg  1+mlg OrNRr
OJNR S GANR GANR
= s = R = s =—2"8 and
T T L A d+s
L
Ns = .
(d+s)(1+m3)

The locally asymptotical stable of each equilibrium state is
determined by the sign of eigenvalues for each equilibrium
state. If all eigenvalues have negative real parts, then that
equilibrium state is local stability [13]. The eigenvalues are
obtained by solving the following characteristic equation

det(J¢, —M5)=0 (17)

where I is the identity matrix dimension 5 x 5 and J, is the

Jacobian matrix of the steady state D;;i=1,2. For the disease
free state C; =(1,0,1,0,0), the Jacobian matrix is given by

—(d+9) 0 0 0 ~0,Ng
0 —(d+d+s) 0 0 0,Ng

L 0 -d 0 —0,Ng
0 d 0 —(d+r)  0,Ng
0 0 0 0  —(d-6gNg)

The characteristic equation is
A+d+d0)(A+d+5+s)A+d)R+d+s)A+pg —OgrNg)=0 (18)
The eigenvalues are

7\41 =—d—6, 7\‘2 :—d—S—S, }\‘3 :—d, )L4 = —d—S,

As=—pp +Og Ng . (19)
We can see that all eigenvalues have negative real parts for
OrNr ) (20)

HR
In the same manner,

Gy <1; where G =

for the endemic disease state

C,= (S?,I;,SZ,I*A,I;) , the Jacobian matrix is given by

~(d+HONT, 0 0 0 ONS
ONJL, 3+ 0 0 ONS
U 0 48N 0 -0,NS,
0 d eANzr; ~d+1) eANzS:\

0 0 0 0 i+ N(1-20)

the characteristic equation is given by
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A+d+8+0,Ny —”ge" YA+d+3+s)r+d+s)A+d+0, N, —“;&) (A+0,Ng —pg) = 0.
(2]
The eigenvalues are
A =—d—5-0,N, +42% 3 4 5 a ——d—s,
9R
g0y
Ay, =—d—-0,N; + 0 s hs ==0, N, + 1, (22)

R
The above eigenvalues have negative real parts for Gy >1;

Br Ng
UR

Therefore, we can conclude that the disease free state is
locally asymptotical stable for Gy <1 and the endemic

where G = (23)

disease state is locally asymptotical stable for G >1, where

Or N . . . .
Gy =—R—R The basic reproductive number of the disease is
HR
evaluated from the averaging of the number of secondary case
that one case can produce if he/she is introduced into a

susceptible human. This number is represented as G'o =.JGg -

B. Numerical Simulation

In this paper, we are interested in the transmission of
Leptospirosis between the human and rat populations. The
different transmission rate of Leptosiposis to juvenile and
adult humans is considered. The values of the parameters used
in this study are as follows: d = 1/(365%x70) per day
corresponds to the life expectancy of 70 years for human
population. s = 1/15 per day corresponds to the 15 days of the
recovery for the human populations. &= 1/(365x15) per day
satisfies the 15 years of the transition from juvenile to adult
human populations. pr =1/(365x1.5) per day satisfies the

life expectancy of 1.5 years for rat population. The other
parameters are arbitary chosen as follows: the total juvenile,
adult humans, transmission rate of Leptospirosis from rat to
juvenile humans, transmission rate of Leptospirosis from rat to
adult humans, transmission rate of Leptospirosis between rats
are Nj=3,000, N, =7,000, 6;=0.001, 6,=0.01 and 6 =
0.000001, respectively.
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Fig. 4 Time series solutions of our dynamical equations. The
parameters are d = 1/(365%70), s = 1/15, 0= 1/(365%15),
Wy =1/GB65X1.5), N; =3,000, N, =7,000, 0, =0.001,

0 , =001,0 ; =0.000001, N =100, G, =0.05475.

We can see that the solutions approach to the disease free

equilibrium state (1,01,0,0)
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Fig. 5 Time series solutions of our dynamical equations. The
parameters are d = 1/(365x70), s = 1/15, & = 1/(365x15),

HR :1/(365X15) N NJ=3,000, NA=7,000, 6]20.001, 6A=
0.01, B =0.000001, Ng =50,000, G =27.375. We can see that

the solutions converge to the disease endemic state
(0.0000046,0.0033,0.00000081,0.00059,0.96)

From fig.5 and fig.6, we can see that the solutions converge
to the disease free state and endemic disease state for G <1

and G >1, respectively
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Fig. 6 Bifurcation diagrams of (10)-(14) demonstrate the equilibrium
solutions of susceptible, infectious juvenile humans, susceptible,
infectious adult humans and infectious rat populations, respectively

for the different values of G with d = 1/(365x70), s==1/15, 8 =
1/(365%15), ug =1/(365x1.5), Nj=3,000, N 5 = 7,000, 0 =

0.001, 8, =0.01, O =0.000001. *#+# represents the stable

solutions and © 8-0-8

1, E; will be stable. For G > 1, E, will be stable

represents the unstable solutions. For G <
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IV. CONCLUSION

The basic reproductive number of the disease (Gy) is
OrNg
UR
reproductive number is higher, this means that one patient can
produce the higher number of secondary cases. If the basic
reproductive number is greater than one, the normalized
susceptible juvenile and susceptible adult human decrease.The
normalized infectious juvenile human, infectious adult human
and infectious rat populations increase. The normalized
infectious juvenile and adult human first increase to a peak
and then decrease. This subsequent behavior occurs because
there are enough susceptible juvenile human and adult human
to be infected from infectious rat population. Furthermore, we
compare the behaviors of time series of solutions when there
is the different transmission rate of Leptospirosis between rat
populations.

defined as follows: G( = . From figure 6, if the basic
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Fig. 7 Time series solutions of our dynamical equations. The
parameters are d = 1/(365x70), s = 1/15, & = 1/(365x15),

ug =1/(365x1.5), Nj=3,000, N = 7,000, 0;=0.001,
0, =0.01, Ng = 50,000
7a) g =0.000001,Gy=27.375 7b) Og=0.00001,G=273.75
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We can see that when there is the smaller transmission rate
of Leptospirosis between rat populations, the basis
reproductive number (G ) is higher and the duration of

reducing the outbreak for this disease is smaller. The basic
reproductive numbers are produced to be the alternative way
for decreasing the outbreak of the diseases [14,15]. The output
of this study should introduce the way for controlling the
outbreak of Leptospirosis.

ACKNOWLEDGMENT

This work is supported by Faculty of Science, King
Mongkut’s Institute of Technology Ladkrabang, Thailand.
Thailand. The author would like to thank Prof.Dr.I-Ming Tang
at Mahidol University, Thailand. Numerical simulations are
done by Thongoon Munmai.

REFERENCES

[11 AR. Bharti, JENally, JN.Ricaldi M.A.Matthias, M.M.Diaz,
M.A.Lovett, P.N.Levett, R.H.Gilman, M.R.Willig, E.Gotuzzo, and J.M.
“Leptospirosis: a zoonotic disease of global importance”, Lancet
Infectious Diseases, vol.12, pp.757-771, 2003.

[2] W.Tangkanakul, =~ H.L.Smits, S.Jatanasen, and D.A.Ashford,
“Leptospirosis: an emerging health problem in Thailand”, Southeast
Asian Journal of Tropical Medicine and Public Health, vol.36,n0.2,
pp.281-288, 2005.

[3] R.Inada, Y. Ido, and et al, “Etiology mode of infection and specific
therapy of Weil's disease”, The Journal of Experimental medicine,vol.
23, pp.377-402, 1916.

[4] R. C. Abdulkader , A. C. Seguro , P. S. Malheiro, and et al, “Peculiar
electrolytic and hormonal abnormalities in acute renal failure due to
leptospirosis”, The American Journal of Tropical Medicine and
Hygiene, vol. 51, no. 1, pp. 1-6, 1996.

[5] V. M. Arean , G. Sarasin, and J. H. Green, “The pathogenesis of
leptospirosis: toxin production by leptospira icterohaemorrha -giae”,
American Journal of Veterinary Research, vol. 28, pp. 836-43, 1964.

[6] V. M. Arean , “Studies on the pathogenesis of leptospirosis.Il, A
clinicopathologic evaluation of hepatic and renal function in
experimental leptospira infections”, Laboratory Investigation, vol. 11,
pp.273-88, 1962.

[71 S. Barkay , and H. Garzozi , “Leptospirosis and uveitis,” Annals of
Ophthalmology, vol. 16, no. 2, pp. 164-8, 1984.

[8] S. Faine, “Guideline for control of leptospirosis”, World Health
Organization Geneva, vol. 67, pp.129, 1982

[9] J.Holt, S.Davis and H.Leirs, “A model of Leptospirosis infection in
African rodent to determine risk to humans : Seasonal fluctuations and
the impact of rodent control”, Acta Tropica, vol. 99, pp. 218 — 225,
2006.

W. Triampo, D. Baowan, I. M. Tang, N. Nuttavut, J. Wong— Ekkabut
and G. Doungchawee, “A Simple Deterministic Model for the Spread of
Leptospirosis in Thailand,” International Journal of Biomedical
Sciences, vol 2, pp. 1306 —1216, 2007.

R. M. Anderson and R.M. May, Infectious Diseases of Humans:
Dynamics and Control, Oxford University Press, Oxford, 1991.

Division of Epidemiology, Annual Epidemiological Surveillance Report,
Ministry of Public Health, Royal Thai Government, 2002-2010.

Edelstein — Keshet, Leah, Mathematical models in biology, Random
House of Canada, 1988.

P.Pongsumpun, and I. M . Tang, “Mathematical model for the
transmission of Plasmodium Vivax Malaria,” International Journal of
mathematical models and methods in applied sciences, vol. 3, pp.117-
121, 2007.

P.Pongsumpun, and I. M . Tang, “Limit Cycle and Chaotic Behaviors
for the Transmission Model of Plasmodium Vivax Malaria
,’International Journal of mathematical models and methods in applied
sciences, vol.2, pp.563-570, 2008.

[10]

[11]

[12]

[13]

[14]

[15]

International Scholarly and Scientific Research & Innovation 6(12) 2012

P. Pongsumpun received her B.Sc. degree in Mathematics (second class
honors), Mahidol University, Thailand, in 1998, and her Ph.D. degree in
Mathematics(International Programme), Mahidol University, Thailand, in
2004. From 2004 till date she is an assistant Professor of Mathematics,
Ph.D.Thesis and M.Sc.advisors in King Mongkut's Institute of Technology
Ladkrabang, Thailand. Her research interests are Mathematical modelling in
medical science, differential equation and numerical analysis.

1644 1SN1:0000000091950263





