Search results for: Dynamic Causal Modeling (DCM)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3845

Search results for: Dynamic Causal Modeling (DCM)

3065 Using Simulation Modeling Approach to Predict USMLE Steps 1 and 2 Performances

Authors: Chau-Kuang Chen, John Hughes, Jr., A. Dexter Samuels

Abstract:

The prediction models for the United States Medical Licensure Examination (USMLE) Steps 1 and 2 performances were constructed by the Monte Carlo simulation modeling approach via linear regression. The purpose of this study was to build robust simulation models to accurately identify the most important predictors and yield the valid range estimations of the Steps 1 and 2 scores. The application of simulation modeling approach was deemed an effective way in predicting student performances on licensure examinations. Also, sensitivity analysis (a/k/a what-if analysis) in the simulation models was used to predict the magnitudes of Steps 1 and 2 affected by changes in the National Board of Medical Examiners (NBME) Basic Science Subject Board scores. In addition, the study results indicated that the Medical College Admission Test (MCAT) Verbal Reasoning score and Step 1 score were significant predictors of the Step 2 performance. Hence, institutions could screen qualified student applicants for interviews and document the effectiveness of basic science education program based on the simulation results.

Keywords: Prediction Model, Sensitivity Analysis, Simulation Method, USMLE.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1457
3064 Study on Construction of 3D Topography by UAV-Based Images

Authors: Yun-Yao Chi, Chieh-Kai Tsai, Dai-Ling Li

Abstract:

In this paper, a method of fast 3D topography modeling using the high-resolution camera images is studied based on the characteristics of Unmanned Aerial Vehicle (UAV) system for low altitude aerial photogrammetry and the need of three dimensional (3D) urban landscape modeling. Firstly, the existing high-resolution digital camera with special design of overlap images is designed by reconstructing and analyzing the auto-flying paths of UAVs, which improves the self-calibration function to achieve the high precision imaging by software, and further increased the resolution of the imaging system. Secondly, several-angle images including vertical images and oblique images gotten by the UAV system are used for the detail measure of urban land surfaces and the texture extraction. Finally, the aerial photography and 3D topography construction are both developed in campus of Chang-Jung University and in Guerin district area in Tainan, Taiwan, provide authentication model for construction of 3D topography based on combined UAV-based camera images from system. The results demonstrated that the UAV system for low altitude aerial photogrammetry can be used in the construction of 3D topography production, and the technology solution in this paper offers a new, fast, and technical plan for the 3D expression of the city landscape, fine modeling and visualization.

Keywords: 3D, topography, UAV, images.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 800
3063 Robust Control of a Dynamic Model of an F-16 Aircraft with Improved Damping through Linear Matrix Inequalities

Authors: J. P. P. Andrade, V. A. F. Campos

Abstract:

This work presents an application of Linear Matrix Inequalities (LMI) for the robust control of an F-16 aircraft through an algorithm ensuring the damping factor to the closed loop system. The results show that the zero and gain settings are sufficient to ensure robust performance and stability with respect to various operating points. The technique used is the pole placement, which aims to put the system in closed loop poles in a specific region of the complex plane. Test results using a dynamic model of the F-16 aircraft are presented and discussed.

Keywords: F-16 Aircraft, linear matrix inequalities, pole placement, robust control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1627
3062 On-line Recognition of Isolated Gestures of Flight Deck Officers (FDO)

Authors: Deniz T. Sodiri, Venkat V S S Sastry

Abstract:

The paper presents an on-line recognition machine (RM) for continuous/isolated, dynamic and static gestures that arise in Flight Deck Officer (FDO) training. RM is based on generic pattern recognition framework. Gestures are represented as templates using summary statistics. The proposed recognition algorithm exploits temporal and spatial characteristics of gestures via dynamic programming and Markovian process. The algorithm predicts corresponding index of incremental input data in the templates in an on-line mode. Accumulated consistency in the sequence of prediction provides a similarity measurement (Score) between input data and the templates. The algorithm provides an intuitive mechanism for automatic detection of start/end frames of continuous gestures. In the present paper, we consider isolated gestures. The performance of RM is evaluated using four datasets - artificial (W TTest), hand motion (Yang) and FDO (tracker, vision-based ). RM achieves comparable results which are in agreement with other on-line and off-line algorithms such as hidden Markov model (HMM) and dynamic time warping (DTW). The proposed algorithm has the additional advantage of providing timely feedback for training purposes.

Keywords: On-line Recognition Algorithm, IsolatedDynamic/Static Gesture Recognition, On-line Markovian/DynamicProgramming, Training in Virtual Environments.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1327
3061 Estimation of Individual Power of Noise Sources Operating Simultaneously

Authors: Pankaj Chandna, Surinder Deswal, Arunesh Chandra, SK Sharma

Abstract:

Noise has adverse effect on human health and comfort. Noise not only cause hearing impairment, but it also acts as a causal factor for stress and raising systolic pressure. Additionally it can be a causal factor in work accidents, both by marking hazards and warning signals and by impeding concentration. Industry workers also suffer psychological and physical stress as well as hearing loss due to industrial noise. This paper proposes an approach to enable engineers to point out quantitatively the noisiest source for modification, while multiple machines are operating simultaneously. The model with the point source and spherical radiation in a free field was adopted to formulate the problem. The procedure works very well in ideal cases (point source and free field). However, most of the industrial noise problems are complicated by the fact that the noise is confined in a room. Reflections from the walls, floor, ceiling, and equipment in a room create a reverberant sound field that alters the sound wave characteristics from those for the free field. So the model was validated for relatively low absorption room at NIT Kurukshetra Central Workshop. The results of validation pointed out that the estimated sound power of noise sources under simultaneous conditions were on lower side, within the error limits 3.56 - 6.35 %. Thus suggesting the use of this methodology for practical implementation in industry. To demonstrate the application of the above analytical procedure for estimating the sound power of noise sources under simultaneous operating conditions, a manufacturing facility (Railway Workshop at Yamunanagar, India) having five sound sources (machines) on its workshop floor is considered in this study. The findings of the case study had identified the two most effective candidates (noise sources) for noise control in the Railway Workshop Yamunanagar, India. The study suggests that the modification in the design and/or replacement of these two identified noisiest sources (machine) would be necessary so as to achieve an effective reduction in noise levels. Further, the estimated data allows engineers to better understand the noise situations of the workplace and to revise the map when changes occur in noise level due to a workplace re-layout.

Keywords: Industrial noise, sound power level, multiple noise sources, sources contribution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1845
3060 A New Approach for Predicting and Optimizing Weld Bead Geometry in GMAW

Authors: Farhad Kolahan, Mehdi Heidari

Abstract:

Gas Metal Arc Welding (GMAW) processes is an important joining process widely used in metal fabrication industries. This paper addresses modeling and optimization of this technique using a set of experimental data and regression analysis. The set of experimental data has been used to assess the influence of GMAW process parameters in weld bead geometry. The process variables considered here include voltage (V); wire feed rate (F); torch Angle (A); welding speed (S) and nozzle-to-plate distance (D). The process output characteristics include weld bead height, width and penetration. The Taguchi method and regression modeling are used in order to establish the relationships between input and output parameters. The adequacy of the model is evaluated using analysis of variance (ANOVA) technique. In the next stage, the proposed model is embedded into a Simulated Annealing (SA) algorithm to optimize the GMAW process parameters. The objective is to determine a suitable set of process parameters that can produce desired bead geometry, considering the ranges of the process parameters. Computational results prove the effectiveness of the proposed model and optimization procedure.

Keywords: Weld Bead Geometry, GMAW welding, Processparameters Optimization, Modeling, SA algorithm

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2183
3059 Computational Fluid Dynamics Simulation and Comparison of Flow through Mechanical Heart Valve Using Newtonian and Non-Newtonian Fluid

Authors: D. Šedivý, S. Fialová

Abstract:

The main purpose of this study is to show differences between the numerical solution of the flow through the artificial heart valve using Newtonian or non-Newtonian fluid. The simulation was carried out by a commercial computational fluid dynamics (CFD) package based on finite-volume method. An aortic bileaflet heart valve (Sorin Bicarbon) was used as a pattern for model of real heart valve replacement. Computed tomography (CT) was used to gain the accurate parameters of the valve. Data from CT were transferred in the commercial 3D designer, where the model for CFD was made. Carreau rheology model was applied as non-Newtonian fluid. Physiological data of cardiac cycle were used as boundary conditions. Outputs were taken the leaflets excursion from opening to closure and the fluid dynamics through the valve. This study also includes experimental measurement of pressure fields in ambience of valve for verification numerical outputs. Results put in evidence a favorable comparison between the computational solutions of flow through the mechanical heart valve using Newtonian and non-Newtonian fluid.

Keywords: Computational modeling, dynamic mesh, mechanical heart valve, non-Newtonian fluid, SDOF.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1614
3058 A Numerical Study of Seismic Response of Shallow Square Tunnels in Two-Layered Ground

Authors: Mahmoud Hassanlourad, Mehran Naghizadehrokni, Vahid Molaei

Abstract:

In this study, the seismic behavior of a shallow tunnel with square cross section is investigated in a two layered and elastic heterogeneous environment using numerical method. To do so, FLAC finite difference software was used. Behavioral model of the ground and tunnel structure was assumed linear elastic. Dynamic load was applied to the model for 0.2 seconds from the bottom in form of a square pulse with maximum acceleration of 1 m/s2. The interface between the two layers was considered at three different levels of crest, middle, and bottom of the tunnel. The stiffness of the two upper and lower layers was considered to be varied from 10 MPa to 1000 MPa. Deformation of cross section of the tunnel due to dynamic load propagation, as well as the values of axial force and bending moment created in the tunnel structure, were examined in the three states mentioned above. The results of analyses show that heterogeneity of the environment, its stratification, and positioning of the interface of the two layers with respect to tunnel height and the stiffness ratio of the two layers have significant effects on the value of bending moment, axial force, and distortion of tunnel cross-section.

Keywords: Dynamic analysis, shallow-buried tunnel, two-layered ground.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 762
3057 Non-Linear Numerical Modeling of the Interaction of Twin Tunnels-Structure

Authors: A. Bayoumi, M. Abdallah, F. Hage Chehade

Abstract:

Structures on the ground surface bear impact from the tunneling-induced settlement, especially when twin tunnels are constructed. The tunneling influence on the structure is considered as a critical issue based on the construction procedure and relative position of tunnels. Lebanon is suffering from a traffic phenomenon caused by the lack of transportation systems. After several traffic counts and geotechnical investigations in Beirut city, efforts aim for the construction of tunneling systems. In this paper, we present a non-linear numerical modeling of the effect of the twin tunnels constructions on the structures located at soil surface for a particular site in Beirut. A parametric study, which concerns the geometric configuration of tunnels, the distance between their centers, the construction order, and the position of the structure, is performed. The tunnel-soil-structure interaction is analyzed by using the non-linear finite element modeling software PLAXIS 2D. The results of the surface settlement and the bending moment of the structure reveal significant influence when the structure is moved away, especially in vertical aligned tunnels.

Keywords: Bending moment, construction procedure, elastic modulus, relative position, soil, structure location, surface settlement, twin tunnels.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1452
3056 Modeling of Plasticity of Clays Submitted to Compression Test

Authors: Otávio J.U. Flores, Fernando A. Andrade, Dachamir Hotza, Hazim A. Al-Qureshi

Abstract:

In the forming of ceramic materials the plasticity concept is commonly used. This term is related to a particular mechanical behavior when clay is mixed with water. A plastic ceramic material shows a permanent strain without rupture when a compressive load produces a shear stress that exceeds the material-s yield strength. For a plastic ceramic body it observes a measurable elastic behavior before the yield strength and when the applied load is removed. In this work, a mathematical model was developed from applied concepts of the plasticity theory by using the stress/strain diagram under compression.

Keywords: Plasticity, clay, modeling, coefficient of friction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2113
3055 Design of S-Shape GPS Application Electrically Small Antenna

Authors: Riki H. Patel, Arpan Desai, Trushit Upadhyaya, Shobhit K. Patel

Abstract:

The microstrip antennas area has seen some inventive work in recent years and is now one of the most dynamic fields of antenna theory. A novel and simple wideband monopole antenna is presented printed on a single dielectric substrate which is fed by a 50 ohm microstrip line having a low-profile antenna structure with two parallel s-shaped meandered line of same size. This antenna is fed by a coaxial feeding tube. In this research, S–form microstrip patch antenna is designed from measuring the prototypes of the proposed antenna one available bands with 10db return loss bandwidths of about GPS application (GPS L2 1490 MHz) and covering the 1400 to 1580 MHz frequency band at 1.5 GHz, the simulated results for main parameters such as return loss, impedance bandwidth, radiation patterns, and gains are also discussed herein. The modeling study shows that such antennas, in simplicity design and supply, can satisfy GPS application. Two parallel slots are incorporated to disturb the surface flow path, introducing local inductive effect. This antenna is fed by a coaxial feeding tube.

Keywords: Bandwidth, electrically small antenna, microstrip patch antenna, GPS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2907
3054 Modeling and Design of an Active Leg Orthosis for Tumble Protection

Authors: Eileen Chih-Ying Yang, Liang-Han Wu, Chieh-Min Chang

Abstract:

The design of an active leg orthosis for tumble protection is proposed in this paper. The orthosis would be applied to assist elders or invalids in rebalancing while they fall unexpectedly. We observe the regain balance motion of healthy and youthful people, and find the difference to elders or invalids. First, the physical model of leg would be established, and we consider the leg motions are achieve through four joints (phalanx stem, ankle, knee, and hip joint) and five links (phalanges, talus, tibia, femur, and hip bone). To formulate the dynamic equations, the coordinates which can clearly describe the position in 3D space are first defined accordance with the human movement of leg, and the kinematics and dynamics of the leg movement can be formulated based on the robotics. For the purpose, assisting elders and invalids in avoiding tumble, the posture variation of unbalance and regaining balance motion are recorded by the motion-capture image system, and the trajectory is taken as the desire one. Then we calculate the force and moment of each joint based on the leg motion model through programming MATLAB code. The results would be primary information of the active leg orthosis design for tumble protection.

Keywords: Active leg orthosis, Tumble protection

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1640
3053 Mechanism of Damping in Welded Structures using Finite Element Approach

Authors: B. Singh, B. K. Nanda

Abstract:

The characterization and modeling of the dynamic behavior of many built-up structures under vibration conditions is still a subject of current research. The present study emphasizes the theoretical investigation of slip damping in layered and jointed welded cantilever structures using finite element approach. Application of finite element method in damping analysis is relatively recent, as such, some problems particularly slip damping analysis has not received enough attention. To validate the finite element model developed, experiments have been conducted on a number of mild steel specimens under different initial conditions of vibration. Finite element model developed affirms that the damping capacity of such structures is influenced by a number of vital parameters such as; pressure distribution, kinematic coefficient of friction and micro-slip at the interfaces, amplitude, frequency of vibration, length and thickness of the specimen. Finite element model developed can be utilized effectively in the design of machine tools, automobiles, aerodynamic and space structures, frames and machine members for enhancing their damping capacity.

Keywords: Amplitude, finite element method, slip damping, tack welding.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1915
3052 Biomechanical Properties of Hen's Eggshell: Experimental Study and Numerical Modeling

Authors: A. Darvizeh, H. Rajabi, S. Fatahtooei Nejad, A. Khaheshi, P. Haghdoust

Abstract:

In this article, biomechanical aspects of hen-s eggshell as a natural ceramic structure are studied. The images, taken by a scanning electron microscope (SEM), are used to investigate the microscopic aspects of the egg. It is observed that eggshell has a three-layered microstructure with different morphological and structural characteristics. Studies on the eggshell membrane (ESM) as a prosperous tissue suggest that it is placed to prevent the penetration of microorganisms into the egg. Finally, numerical models of the egg are presented to study the stress distribution and its deformation under different loading conditions. The effects of two different types of loading (hydrostatic and point loadings) on two different shell models (with constant and variable thicknesses) are investigated in detail.

Keywords: Eggshell, biomechanical properties, Scanning electron microscope, Numerical Modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2462
3051 Detection ofTensile Forces in Cable-Stayed Structures Using the Advanced Hybrid Micro-Genetic Algorithm

Authors: Sang-Youl Lee

Abstract:

This study deals with an advanced numerical techniques to detect tensile forces in cable-stayed structures. The proposed method allows us not only to avoid the trap of minimum at initial searching stage but also to find their final solutions in better numerical efficiency. The validity of the technique is numerically verified using a set of dynamic data obtained from a simulation of the cable model modeled using the finite element method. The results indicate that the proposed method is computationally efficient in characterizing the tensile force variation for cable-stayed structures.

Keywords: Tensile force detection, cable-stayed structures, hybrid system identification (h-SI), dynamic response.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2123
3050 Structural Safety Evaluation of Zip-Line Due to Dynamic Impact Load

Authors: Bu Seog Ju, Jae Sang Kim, Woo Young Jung

Abstract:

In recent year, with recent increase of interest towards leisure sports, increased number of Zip-Line or Zip-Wire facilities has built. Many researches have been actively conducted on the emphasis of the cable and the wire at the bridge. However, very limited researches have been conducted on the safety of the Zip-Line structure. In fact, fall accidents from Zip-Line have been reported frequently. Therefore, in this study, the structural safety of Zip-Line under dynamic impact loading condition were evaluated on the previously installed steel cable for leisure (Zip-Line), using 3-dimensional nonlinear Finite Element (FE) model. The result from current study would assist assurance of systematic stability of Zip-Line.

Keywords: Zip-Line, Wire, Cable, 3D FE Model, Safety.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4097
3049 Coupled Spacecraft Orbital and Attitude Modeling and Simulation in Multi-Complex Modes

Authors: Amr Abdel Azim Ali, G. A. Elsheikh, Moutaz Hegazy

Abstract:

This paper presents verification of a modeling and simulation for a Spacecraft (SC) attitude and orbit control system. Detailed formulation of coupled SC orbital and attitude equations of motion is performed in order to achieve accepted accuracy to meet the requirements of multitargets tracking and orbit correction complex modes. Correction of the target parameter based on the estimated state vector during shooting time to enhance pointing accuracy is considered. Time-optimal nonlinear feedback control technique was used in order to take full advantage of the maximum torques that the controller can deliver. This simulation provides options for visualizing SC trajectory and attitude in a 3D environment by including an interface with V-Realm Builder and VR Sink in Simulink/MATLAB. Verification data confirms the simulation results, ensuring that the model and the proposed control law can be used successfully for large and fast tracking and is robust enough to keep the pointing accuracy within the desired limits with considerable uncertainty in inertia and control torque.

Keywords: Attitude and orbit control, time-optimal nonlinear feedback control, modeling and simulation, pointing accuracy, maximum torques.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1308
3048 Simulation of Obstacle Avoidance for Multiple Autonomous Vehicles in a Dynamic Environment Using Q-Learning

Authors: Andreas D. Jansson

Abstract:

The availability of inexpensive, yet competent hardware allows for increased level of automation and self-optimization in the context of Industry 4.0. However, such agents require high quality information about their surroundings along with a robust strategy for collision avoidance, as they may cause expensive damage to equipment or other agents otherwise. Manually defining a strategy to cover all possibilities is both time-consuming and counter-productive given the capabilities of modern hardware. This paper explores the idea of a model-free self-optimizing obstacle avoidance strategy for multiple autonomous agents in a simulated dynamic environment using the Q-learning algorithm.

Keywords: Autonomous vehicles, industry 4.0, multi-agent system, obstacle avoidance, Q-learning, simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 503
3047 Application of Neural Network on the Loading of Copper onto Clinoptilolite

Authors: John Kabuba

Abstract:

The study investigated the implementation of the Neural Network (NN) techniques for prediction of the loading of Cu ions onto clinoptilolite. The experimental design using analysis of variance (ANOVA) was chosen for testing the adequacy of the Neural Network and for optimizing of the effective input parameters (pH, temperature and initial concentration). Feed forward, multi-layer perceptron (MLP) NN successfully tracked the non-linear behavior of the adsorption process versus the input parameters with mean squared error (MSE), correlation coefficient (R) and minimum squared error (MSRE) of 0.102, 0.998 and 0.004 respectively. The results showed that NN modeling techniques could effectively predict and simulate the highly complex system and non-linear process such as ionexchange.

Keywords: Clinoptilolite, loading, modeling, Neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1566
3046 Modeling Studies for Electrocoagulation

Authors: A. Genç, R. Hacıoğlu, B. Bakırcı

Abstract:

Synthetic oily wastewaters were prepared from metal working fluids (MWF). Electrocoagulation experiments were performed under constant voltage application. The current, conductivity, pH, dissolved oxygen concentration and temperature were recorded on line at every 5 seconds during the experiments. Effects of applied voltage differences, electrode materials and distance between electrodes on removal efficiency have been investigated. According to the experimental results, the treatment of MWF wastewaters by iron electrodes rather than aluminum and stainless steel was much quicker; and the distance between electrodes should be less than 1cm. The electrocoagulation process was modeled by using block oriented approach and found out that it can be modeled as a single input and multiple output system. Modeling studies indicates that the electrocoagulation process has a nonlinear model structure.

Keywords: Electrocoagulation, oily wastewater, SIMO systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2080
3045 Probabilistic Modeling of Network-induced Delays in Networked Control Systems

Authors: Manoj Kumar, A.K. Verma, A. Srividya

Abstract:

Time varying network induced delays in networked control systems (NCS) are known for degrading control system-s quality of performance (QoP) and causing stability problems. In literature, a control method employing modeling of communication delays as probability distribution, proves to be a better method. This paper focuses on modeling of network induced delays as probability distribution. CAN and MIL-STD-1553B are extensively used to carry periodic control and monitoring data in networked control systems. In literature, methods to estimate only the worst-case delays for these networks are available. In this paper probabilistic network delay model for CAN and MIL-STD-1553B networks are given. A systematic method to estimate values to model parameters from network parameters is given. A method to predict network delay in next cycle based on the present network delay is presented. Effect of active network redundancy and redundancy at node level on network delay and system response-time is also analyzed.

Keywords: NCS (networked control system), delay analysis, response-time distribution, worst-case delay, CAN, MIL-STD-1553B, redundancy

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1768
3044 A Novel Approach to Allocate Channels Dynamically in Wireless Mesh Networks

Authors: Y. Harold Robinson, M. Rajaram

Abstract:

Wireless mesh networking is rapidly gaining in popularity with a variety of users: from municipalities to enterprises, from telecom service providers to public safety and military organizations. This increasing popularity is based on two basic facts: ease of deployment and increase in network capacity expressed in bandwidth per footage; WMNs do not rely on any fixed infrastructure. Many efforts have been used to maximizing throughput of the network in a multi-channel multi-radio wireless mesh network. Current approaches are purely based on either static or dynamic channel allocation approaches. In this paper, we use a hybrid multichannel multi radio wireless mesh networking architecture, where static and dynamic interfaces are built in the nodes. Dynamic Adaptive Channel Allocation protocol (DACA), it considers optimization for both throughput and delay in the channel allocation. The assignment of the channel has been allocated to be codependent with the routing problem in the wireless mesh network and that should be based on passage flow on every link. Temporal and spatial relationship rises to re compute the channel assignment every time when the pattern changes in mesh network, channel assignment algorithms assign channels in network. In this paper a computing path which captures the available path bandwidth is the proposed information and the proficient routing protocol based on the new path which provides both static and dynamic links. The consistency property guarantees that each node makes an appropriate packet forwarding decision and balancing the control usage of the network, so that a data packet will traverse through the right path.

Keywords: Wireless mesh network, spatial time division multiple access, hybrid topology, timeslot allocation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1835
3043 Solving Part Type Selection and Loading Problem in Flexible Manufacturing System Using Real Coded Genetic Algorithms – Part I: Modeling

Authors: Wayan F. Mahmudy, Romeo M. Marian, Lee H. S. Luong

Abstract:

This paper and its companion (Part 2) deal with modeling and optimization of two NP-hard problems in production planning of flexible manufacturing system (FMS), part type selection problem and loading problem. The part type selection problem and the loading problem are strongly related and heavily influence the system-s efficiency and productivity. The complexity of the problems is harder when flexibilities of operations such as the possibility of operation processed on alternative machines with alternative tools are considered. These problems have been modeled and solved simultaneously by using real coded genetic algorithms (RCGA) which uses an array of real numbers as chromosome representation. These real numbers can be converted into part type sequence and machines that are used to process the part types. This first part of the papers focuses on the modeling of the problems and discussing how the novel chromosome representation can be applied to solve the problems. The second part will discuss the effectiveness of the RCGA to solve various test bed problems.

Keywords: Flexible manufacturing system, production planning, part type selection problem, loading problem, real-coded genetic algorithm

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2103
3042 Research of Ring MEMS Rate Integrating Gyroscopes

Authors: Hui Liu, Haiyang Quan

Abstract:

This paper To get the angle value with a MEMS rate gyroscope in some specific field, the usual method is to make an integral operation to the rate output, which will lead the error cumulating effect. So the rate gyro is not suitable. MEMS rate integrating gyroscope (MRIG) will solve this problem. A DSP system has been developed to implement the control arithmetic. The system can measure the angle of rotation directly by the control loops that make the sensor work in whole-angle mode. Modeling the system with MATLAB, desirable results of angle outputs are got, which prove the feasibility of the control arithmetic.

Keywords: Rate gyroscope, Rate integrating gyroscope, Whole angle mode, MATLAB modeling, DSP control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3250
3041 Recognition Machine (RM) for On-line and Isolated Flight Deck Officer (FDO) Gestures

Authors: Deniz T. Sodiri, Venkat V S S Sastry

Abstract:

The paper presents an on-line recognition machine (RM) for continuous/isolated, dynamic and static gestures that arise in Flight Deck Officer (FDO) training. RM is based on generic pattern recognition framework. Gestures are represented as templates using summary statistics. The proposed recognition algorithm exploits temporal and spatial characteristics of gestures via dynamic programming and Markovian process. The algorithm predicts corresponding index of incremental input data in the templates in an on-line mode. Accumulated consistency in the sequence of prediction provides a similarity measurement (Score) between input data and the templates. The algorithm provides an intuitive mechanism for automatic detection of start/end frames of continuous gestures. In the present paper, we consider isolated gestures. The performance of RM is evaluated using four datasets - artificial (W TTest), hand motion (Yang) and FDO (tracker, vision-based ). RM achieves comparable results which are in agreement with other on-line and off-line algorithms such as hidden Markov model (HMM) and dynamic time warping (DTW). The proposed algorithm has the additional advantage of providing timely feedback for training purposes.

Keywords: On-line Recognition Algorithm, IsolatedDynamic/Static Gesture Recognition, On-line Markovian/DynamicProgramming, Training in Virtual Environments.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1458
3040 Impact of Combustion of Water in Fuel on Polycyclic Aromatic Hydrocarbon (Pah-s)Precursors- Formation

Authors: Abdulaziz H. El-Sinawi

Abstract:

Some of the polycyclic aromatic hydrocarbons (PAHs) are the strongest known carcinogens compounds; the majority of them are mostly produced by the incomplete combustion of fossil fuels; Motor vehicles are a significant source of polycyclic aromatic hydrocarbon (PAH) where diesel emission is one of the main sources of such compounds available in the ambient air. There is a big concern about the increasing concentration of PAHs in the environment. Researchers are trying to explore optimal methods to reduce those pollutants and improve the quality of air. Water blended fuel is one of the possible approaches to reduce emission of PAHs from the combustion of diesel in urban and domestic vehicles. In this work a modeling study was conducted using CHEMKIN-PRO software to simulate spray combustion at similar diesel engine conditions. Surrogate fuel of (80 % n-heptane and 20 % toluene) was used due to detailed kinetic and thermodynamic data needed for modeling is available for this kind of fuel but not available for diesel. An emulsified fuel with 3, 5, 8, 10 and 20 % water by volume is used as an engine feed for this study. The modeling results show that water has a significant effect on reducing engine soot and PAHs precursors formation up to certain extent.

Keywords: Polycyclic Aromatic Hydrocarbons (PAHs), DieselEngine, Emission, Surrogate Fuel, Emulsified Fuel, Soot precursors, Combustion

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1989
3039 Analysis of Vocal Fold Vibrations from High-Speed Digital Images Based On Dynamic Time Warping

Authors: A. I. A. Rahman, Sh-Hussain Salleh, K. Ahmad, K. Anuar

Abstract:

Analysis of vocal fold vibration is essential for understanding the mechanism of voice production and for improving clinical assessment of voice disorders. This paper presents a Dynamic Time Warping (DTW) based approach to analyze and objectively classify vocal fold vibration patterns. The proposed technique was designed and implemented on a Glottal Area Waveform (GAW) extracted from high-speed laryngeal images by delineating the glottal edges for each image frame. Feature extraction from the GAW was performed using Linear Predictive Coding (LPC). Several types of voice reference templates from simulations of clear, breathy, fry, pressed and hyperfunctional voice productions were used. The patterns of the reference templates were first verified using the analytical signal generated through Hilbert transformation of the GAW. Samples from normal speakers’ voice recordings were then used to evaluate and test the effectiveness of this approach. The classification of the voice patterns using the technique of LPC and DTW gave the accuracy of 81%.

Keywords: Dynamic Time Warping, Glottal Area Waveform, Linear Predictive Coding, High-Speed Laryngeal Images, Hilbert Transform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2329
3038 Modeling and Simulation of Honeycomb Steel Sandwich Panels under Blast Loading

Authors: Sayed M. Soleimani, Nader H. Ghareeb, Nourhan H. Shaker, Muhammad B. Siddiqui

Abstract:

Honeycomb sandwich panels have been widely used as protective structural elements against blast loading. The main advantages of these panels include their light weight due to the presence of voids, as well as their energy absorption capability. Terrorist activities have imposed new challenges to structural engineers to design protective measures for vital structures. Since blast loading is not usually considered in the load combinations during the design process of a structure, researchers around the world have been motivated to study the behavior of potential elements capable of resisting sudden loads imposed by the detonation of explosive materials. One of the best candidates for this objective is the honeycomb sandwich panel. Studying the effects of explosive materials on the panels requires costly and time-consuming experiments. Moreover, these type of experiments need permission from defense organizations which can become a hurdle. As a result, modeling and simulation using an appropriate tool can be considered as a good alternative. In this research work, the finite element package ABAQUS® is used to study the behavior of hexagonal and squared honeycomb steel sandwich panels under the explosive effects of different amounts of trinitrotoluene (TNT). The results of finite element modeling of a specific honeycomb configuration are initially validated by comparing them with the experimental results from literature. Afterwards, several configurations including different geometrical properties of the honeycomb wall are investigated and the results are compared with the original model. Finally, the effectiveness of the core shape and wall thickness are discussed, and conclusions are made.

Keywords: Blast loading, finite element modeling, steel honeycomb sandwich panel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1695
3037 Modeling Jordan University of Science and Technology Parking Using Arena Program

Authors: T. Qasim, M. Alqawasmi, M. Hawash, M. Betar, W. Qasim

Abstract:

Over the last decade, the over population that has happened in urban areas has been reflecting on the services that various local institutions provide to car users in the form of car parks, which is becoming a daily necessity in our lives. This study focuses on car parks at Jordan University of Science and Technology, in Irbid, Jordan, to understand the university parking needs. Data regarding arrival and departure times of cars and the parking utilization were collected, to find various options that the university can implement to solve and develop an efficient car parking system. Arena software was used to simulate a parking model. This model allows measuring the different solutions that solve the parking problem at Jordan University of Science and Technology.

Keywords: Car park, modeling, service time, simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 822
3036 Modeling and Validation of Microspheres Generation in the Modified T-Junction Device

Authors: Lei Lei, Hongbo Zhang, Donald J. Bergstrom, Bing Zhang, K. Y. Song, W. J. Zhang

Abstract:

This paper presents a model for a modified T-junction device for microspheres generation. The numerical model is developed using a commercial software package: COMSOL Multiphysics. In order to test the accuracy of the numerical model, multiple variables, such as the flow rate of cross-flow, fluid properties, structure, and geometry of the microdevice are applied. The results from the model are compared with the experimental results in the diameter of the microsphere generated. The comparison shows a good agreement. Therefore the model is useful in further optimization of the device and feedback control of microsphere generation if any.

Keywords: CFD modeling, validation, microsphere generation, modified T-junction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2560