Search results for: Carbon dioxide composite inorganic membranes
820 Application of Statistical Approach for Optimizing CMCase Production by Bacillus tequilensis S28 Strain via Submerged Fermentation Using Wheat Bran as Carbon Source
Authors: A. Sharma, R. Tewari, S. K. Soni
Abstract:
Biofuels production has come forth as a future technology to combat the problem of depleting fossil fuels. Bio-based ethanol production from enzymatic lignocellulosic biomass degradation serves an efficient method and catching the eye of scientific community. High cost of the enzyme is the major obstacle in preventing the commercialization of this process. Thus main objective of the present study was to optimize composition of medium components for enhancing cellulase production by newly isolated strain of Bacillus tequilensis. Nineteen factors were taken into account using statistical Plackett-Burman Design. The significant variables influencing the cellulose production were further employed in statistical Response Surface Methodology using Central Composite Design for maximizing cellulase production. The optimum medium composition for cellulase production was: peptone (4.94 g/L), ammonium chloride (4.99 g/L), yeast extract (2.00 g/L), Tween-20 (0.53 g/L), calcium chloride (0.20 g/L) and cobalt chloride (0.60 g/L) with pH 7, agitation speed 150 rpm and 72 h incubation at 37oC. Analysis of variance (ANOVA) revealed high coefficient of determination (R2) of 0.99. Maximum cellulase productivity of 11.5 IU/ml was observed against the model predicted value of 13 IU/ml. This was found to be optimally active at 60oC and pH 5.5.
Keywords: Bacillus tequilensis, CMCase, Submerged Fermentation, Optimization, Plackett-Burman Design, Response Surface Methodology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3063819 Seismic Excitation of Steel Frame Retrofitted by a Multi-Panel PMC Infill Wall
Authors: Bu Seog Ju, Woo Young Jung
Abstract:
A multi-panel PMC infilled system, using polymer matrix composite (PMC) material, was introduced as new conceptual design for seismic retrofitting. A proposed multi panel PMC infilled system was composed of two basic structural components: inner PMC sandwich infills and outer FRP damping panels. The PMC material had high stiffness-to-weight and strength-to-weight ratios. Therefore, the addition of PMC infill panels into existing structures would not significantly alter the weight of the structure, while providing substantial structural enhancement.
In this study, an equivalent linearized dynamic analysis for a proposed multi-panel PMC infilled frame was performed, in order to assess their effectiveness and their responses under the simulated earthquake loading. Upon comparing undamped (without PMC panel) and damped (with PMC panel) structures, numerical results showed that structural damping with passive interface damping layer could significantly enhance the seismic response.
Keywords: Polymer Matrix Composite (PMC), Panel, Piece-wise linear, Earthquake, FRP.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2331818 Non Destructive Testing for Evaluation of Defects and Interfaces in Metal Carbon Fiber Reinforced Polymer Hybrids
Authors: H.-G. Herrmann, M. Schwarz, J. Summa, F. Grossmann
Abstract:
In this work, different non-destructive testing methods for the characterization of defects and interfaces are presented. It is shown that, by means of active thermography, defects in the interface and in the carbon fiber reinforced polymer (CFRP) itself can be detected and determined. The bonding of metal and thermoplastic can be characterized very well by ultrasonic testing with electromagnetic acoustic transducers (EMAT). Mechanical testing is combined with passive thermography to correlate mechanical values with the defect-size. There is also a comparison between active and passive thermography. Mechanical testing shows the influence of different defects. Furthermore, a correlation of defect-size and loading to rupture was performed.
Keywords: Defect evaluation, EMAT, mechanical testing, thermography.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1518817 Possibilities of using a Portable Continuous Concentrator for Detection and Identification of Explosives
Authors: Z. Večeřa, P. Mikuška, J. Kellner, J. Navrátil, A. Langerová
Abstract:
The submitted paper deals with the problems of trapping and enriching the gases and aerosols of the substances to be determined in the ambient atmosphere. Further, the paper is focused on the working principle of the miniaturized portable continuous concentrator we have designed and the possibilities of its application in air sampling and accumulation of organic and inorganic substances with which the air is contaminated. The stress is laid on trapping vapours and aerosols of solid substances with the comparatively low vapour tension such as explosive compounds.Keywords: Detectors of explosives, portable continuousconcentrator, misuse of explosive, terrorism.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1360816 Temperature Control & Comfort Level of Elementary School Building with Green Roof in New Taipei City, Taiwan
Authors: Ying-Ming Su, Mei-Shu Huang
Abstract:
To mitigate the urban heat island effect has become a global issue when we are faced with the challenge of climate change. Through literature review, plant photosynthesis can reduce the carbon dioxide and mitigate the urban heat island effect to a degree. Because there are not enough open space and parks, green roof has become an important policy in Taiwan. We selected elementary school buildings in northern New Taipei City as research subjects since elementary schools are asked with priority to build green roof and important educational place to promote green roof concept. Testo175-H1 recording device was used to record the temperature and humidity differences between roof surface and interior space below roof with and without green roof in the long-term. We also use questionnaires to investigate the awareness of comfort level of green roof and sensation of teachers and students of the elementary schools. The results indicated that the temperature of roof without greening was higher than that with greening by about 2°C. But sometimes during noontime, the temperature of green roof was higher than that of non-green roof probably because of the character of the accumulation and dissipation of heat of greening. The temperature of the interior space below green roof was normally lower than that without green roof by about 1°C, showing that green roof could lower the temperature. The humidity of the green roof was higher than the one without greening also indicated that green roof retained water better. Teachers liked to combine green roof concept in the curriculum, and students wished all classes can take turns to maintain the green roof. Teachers and students whose school had integrated green roof concept in the curriculum were more willing to participate in the maintenance work of green roof. Teachers and students who may have access to and touch the green roof can be more aware of the green roof benefit. We suggest architects to increase the accessibility and visibility of green roof, such as use it as a part of the activity space. This idea can be a reference to the green roof curriculum design.Keywords: Comfort level, elementary school, green roof, heat island effect.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2004815 New Drug Delivery System for Cancer Therapy
Authors: Emma R. Arakelova, Stepan G. Grigoryan, Ashot M. Khachatryan, Karapet E. Avjyan, Lilia M. Savchenko, Flora G. Arsenyan
Abstract:
The paper presents a new drugs delivery system, based on the thin film technology. As a model antitumor drug, highly toxic doxorubicin is chosen. The system is based on the technology of obtaining zinc oxide composite of doxorubicin by deposition of nanosize ZnO films on the surface of doxorubicin coating on glass substrate using DC magnetron sputtering of zinc targets in Ar:O2 medium at room temperature. For doxorubicin zinc oxide compositions in the form of coatings and gels with 180-200nm thick ZnO films, higher (by a factor 2) in vivo (ascitic Ehrlich's carcinoma) antitumor activity is observed at low doses of doxorubicin in comparison with that of the initial preparation at therapeutic doses. The vector character of the doxorubicin zinc oxide composite transport to tumor tissues ensures the increase in antitumor activity as well as decrease of toxicity in comparison with the initial drug.
Keywords: Antitumor activity, doxorubicin, DC magnetron sputtering, zinc oxide.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3614814 Interaction of Elevated Carbon Dioxide and Temperature on Strawberry (Fragaria × ananassa) Growth and Fruit Yield
Authors: Himali N. Balasooriya, Kithsiri B. Dassanayake, Saman Seneweera, Said Ajlouni
Abstract:
Increase in atmospheric CO2 concentration [CO2] and ambient temperature associated with changing climatic conditions will have significant impacts on agriculture crop productivity and quality. Independent effects of the above two environmental variables on the growth, yield and quality of strawberry were well documented. Higher temperatures over the optimum range (20-25ºC) lead to crop failures, while elevated [CO2] stimulated plant growth and yield but compromised the physical quality of fruits. However, there is very limited understanding of the interaction between these variables on the plant growth, yield and quality. Therefore, this study was designed to investigate the interactive effect of high temperature and elevated [CO2] on growth, yield and quality of strawberries. Strawberry cultivars ‘Albion’ and ‘San Andreas’ were grown under six different combinations of two temperatures (25 and 30ºC) and three [CO2] (400, 650 and 950 µmol mol-1) in controlled-environmental growth chambers. Plant growth measurements such as plant height, canopy area, number of flowers, and fruit yield were measured during phonological development. Photosynthesis and transpiration, the ratio of intercellular to atmospheric [CO2] (Ci/Ca) were measured to estimate the physiological adjustment to climate stress. The impact of temperature and [CO2] interaction on growth and yield of strawberry was significant (p < 0.05). Across both cultivars, highest fruit yields were observed at 650 µmol mol-1 [CO2], which was particularly clear at 25°C. The fruit yield gradually decreased at 30°C under all the treatment combinations. However, photosynthesis rates were highest at 650 µmol mol-1 [CO2] but no increment was found at 900 µmol mol-1 [CO2]. Interestingly, Ci/Ca ratio increased with increasing atmospheric [CO2] which was predominant at high temperature. Similarly, fruit yield was substantially reduced at high [CO2] under high temperature. Our findings suggest that increased Ci/Ca ratio at high temperature is likely reduces the photosynthesis and thus yield response to elevated [CO2].
Keywords: Atmospheric [CO2], fruit yield, strawberry, temperature.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 982813 Strengthen of Cold-Formed Steel Column with Ferrocement Jacket: Push out Tests
Authors: Khaled Alenezi, Talal Alhajri, M. M. Tahir, Mohamed Ragaee K. Badr, S. O. Bamaga
Abstract:
The population growth in the world requires an increase in demand of residential and housing construction. Using lightweight construction materials such as cold formed steel sections and ferrocement could be an alternate solution to foster the construction industry. In this study, a new composite column is introduced. It consists of cold formed steel section and ferrocement jacket. The ferrocement jacket was constructed using self-compacting mortar with two wire steel mesh of 550 MPa yield strength. Experimental push out tests was conducted to investigate the strength capacities and behavior of proposed shear connectors namely, bolt, bar-angle and self-drilling screw shear connectors. It was found that bolt connector showed the best behavior followed by bar-angle. Also, it was concluded that the ferrocement could be used to strength and improve the behavior of cold formed steel column.
Keywords: Cold formed steel, composite column, push out test, shear connector, ferrocement, strengthen method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3291812 A Study on the Interlaminar Shear Strength of Carbon Fiber Reinforced Plastics Depending on the Lamination Methods
Authors: Min Sang Lee, Hee Jae Shin, In Pyo Cha, Sun Ho Ko, Hyun Kyung Yoon, Hong Gun Kim, Lee Ku Kwac
Abstract:
The prepreg process among the CFRP (Carbon Fiber Reinforced Plastic) forming methods is the short term of ‘Pre-impregnation’, which is widely used for aerospace composites that require a high quality property such as a fiber-reinforced woven fabric, in which an epoxy hardening resin is impregnated the reality. However, that this process requires continuous researches and developments for its commercialization because the delamination characteristically develops between the layers when a great weight is loaded from outside to supplement such demerit, three lamination methods among the prepreg lamination methods of CFRP were designed to minimize the delamination between the layers due to external impacts. Further, the newly designed methods and the existing lamination methods were analyzed through a mechanical characteristic test, Interlaminar Shear Strength test. The Interlaminar Shear Strength test result confirmed that the newly proposed three lamination methods, i.e. the Roll, Half and Zigzag laminations, presented more excellent strengths compared to the conventional Ply lamination. The interlaminar shear strength in the roll method with relatively dense fiber distribution was approximately 1.75% higher than that in the existing ply lamination method, and in the half method, it was approximately 0.78% higher.
Keywords: Carbon Fiber Reinforced Plastic (CFRP), Pre-Impregnation, Laminating Method, Interlaminar Shear Strength (ILSS).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2910811 An Experimental Design Approach to Determine Effects of The Operating Parameters on The Rate of Ru promoted Ir Carbonylation of Methanol
Authors: Vahid Hosseinpour, Mohammad Kazemini, Alireza Mohammadrezaee
Abstract:
carbonylation of methanol in homogenous phase is one of the major routesfor production of acetic acid. Amongst group VIII metal catalysts used in this process iridium has displayed the best capabilities. To investigate effect of operating parameters like: temperature, pressure, methyl iodide, methyl acetate, iridium, ruthenium, and water concentrations on the reaction rate, experimental design for this system based upon central composite design (CCD) was utilized. Statistical rate equation developed by this method contained individual, interactions and curvature effects of parameters on the reaction rate. The model with p-value less than 0.0001 and R2 values greater than 0.9; confirmeda satisfactory fitness of the experimental and theoretical studies. In other words, the developed model and experimental data obtained passed all diagnostic tests establishing this model as a statistically significant.Keywords: Acetic Acid, Carbonylation of Methanol, Central Composite Design, Experimental Design, Iridium/Ruthenium
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3660810 Climate Change and Poverty Nexus
Authors: O. Babalola Oladapo, A. Igbatayo Samuel
Abstract:
Climate change and poverty are global issues which cannot be waved aside in welfare of the ever increasing population. The causes / consequences are far more elaborate in developing countries, including Nigeria, which poses threats to the existence of man and his environment. The dominant role of agriculture makes it obvious that even minor climate deteriorations can cause devastating socio-economic consequences. Policies to curb the climate change by reducing the consumption of fossil fuels like oil, gas or carbon compounds have significant economical impacts on the producers/suppliers of these fuels. Thus a unified political narrative that advances both agendas is needed, because their components of an environmental coin that needs to be addressed. The developed world should maintain a low-carbon growth & real commitment of 0.7% of gross national income, as aid to developing countries & renewable energy approach should be emphasized, hence global poverty combated.
Keywords: Climate Change, Greenhouse gases, Nigeria, Poverty.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2643809 Microalgal Lipid Production by Microalgae Chlorella sp. KKU-S2
Authors: Ratanaporn Leesing, Supaporn Kookkhunthod, Ngarmnit Nontaso
Abstract:
The objective of this work is to produce heterotrophic microalgal lipid in flask-batch fermentation. Chlorella sp. KKU-S2 supported maximum values of 0.374 g/L/d, 0.478 g lipid/g cells, and 0.112 g/L/d for volumetric lipid production rate, and specific yield of lipid, and specific rate of lipid production, respectively when culture was performed on BG-11 medium supplemented with 50g/L glucose. Among the carbon sources tested, maximum cell yield coefficient (YX/S, g/L), maximum specific yield of lipid (YP/X, g lipid/g cells) and volumetric lipid production rate (QP, g/L/d) were found of 0.728, 0.237, and 0.619, respectively, using sugarcane molasses as carbon source. The main components of fatty acid from extracted lipid were palmitic acid, stearic acid, oleic acid and linoleic acid which similar to vegetable oils and suitable for biodiesel production.Keywords: Microalgal lipid, Chlorella sp. KKU-S2, kineticparameters, biodiesel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2711808 A Dynamic Mechanical Thermal T-Peel Test Approach to Characterize Interfacial Behavior of Polymeric Textile Composites
Authors: J. R. Büttler, T. Pham
Abstract:
Basic understanding of interfacial mechanisms is of importance for the development of polymer composites. For this purpose, we need techniques to analyze the quality of interphases, their chemical and physical interactions and their strength and fracture resistance. In order to investigate the interfacial phenomena in detail, advanced characterization techniques are favorable. Dynamic mechanical thermal analysis (DMTA) using a rheological system is a sensitive tool. T-peel tests were performed with this system, to investigate the temperature-dependent peel behavior of woven textile composites. A model system was made of polyamide (PA) woven fabric laminated with films of polypropylene (PP) or PP modified by grafting with maleic anhydride (PP-g-MAH). Firstly, control measurements were performed with solely PP matrixes. Polymer melt investigations, as well as the extensional stress, extensional viscosity and extensional relaxation modulus at -10°C, 100 °C and 170 °C, demonstrate similar viscoelastic behavior for films made of PP-g-MAH and its non-modified PP-control. Frequency sweeps have shown that PP-g-MAH has a zero phase viscosity of around 1600 Pa·s and PP-control has a similar zero phase viscosity of 1345 Pa·s. Also, the gelation points are similar at 2.42*104 Pa (118 rad/s) and 2.81*104 Pa (161 rad/s) for PP-control and PP-g-MAH, respectively. Secondly, the textile composite was analyzed. The extensional stress of PA66 fabric laminated with either PP-control or PP-g-MAH at -10 °C, 25 °C and 170 °C for strain rates of 0.001 – 1 s-1 was investigated. The laminates containing the modified PP need more stress for T-peeling. However, the strengthening effect due to the modification decreases by increasing temperature and at 170 °C, just above the melting temperature of the matrix, the difference disappears. Independent of the matrix used in the textile composite, there is a decrease of extensional stress by increasing temperature. It appears that the more viscous is the matrix, the weaker the laminar adhesion. Possibly, the measurement is influenced by the fact that the laminate becomes stiffer at lower temperatures. Adhesive lap-shear testing at room temperature supports the findings obtained with the T-peel test. Additional analysis of the textile composite at the microscopic level ensures that the fibers are well embedded in the matrix. Atomic force microscopy (AFM) imaging of a cross section of the composite shows no gaps between the fibers and matrix. Measurements of the water contact angle show that the MAH grafted PP is more polar than the virgin-PP, and that suggests a more favorable chemical interaction of PP-g-MAH with PA, compared to the non-modified PP. In fact, this study indicates that T-peel testing by DMTA is a technique to achieve more insights into polymeric textile composites.
Keywords: Dynamic mechanical thermal analysis, interphase, polyamide, polypropylene, textile composite, T-peel test.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 732807 Microwave Shielding of Magnetized Hydrogen Plasma in Carbon Nanotubes
Authors: Afshin Moradi, Mohammad Hosain Teimourpour
Abstract:
We derive simple sets of equations to describe the microwave response of a thin film of magnetized hydrogen plasma in the presence of carbon nanotubes, which were grown by ironcatalyzed high-pressure disproportionation (HiPco). By considering the interference effects due to multiple reflections between thin plasma film interfaces, we present the effects of the continuously changing external magnetic field and plasma parameters on the reflected power, absorbed power, and transmitted power in the system. The simulation results show that the interference effects play an important role in the reflectance, transmittance and absorptance of microwave radiation at the magnetized plasma slab. As a consequence, the interference effects lead to a sinusoidal variation of the reflected intensity and can greatly reduce the amount of reflection power, but the absorption power increases.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1402806 Pentachlorophenol Removal via Adsorption and Biodegradation
Authors: Rakmi Abd.-Rahman, Nurina Anuar
Abstract:
Removal of PCP by a system combining biodegradation by biofilm and adsorption was investigated here. Three studies were conducted employing batch tests, sequencing batch reactor (SBR) and continuous biofilm activated carbon column reactor (BACCOR). The combination of biofilm-GAC batch process removed about 30% more PCP than GAC adsorption alone. For the SBR processes, both the suspended and attached biomass could remove more than 90% of the PCP after acclimatisation. BACCOR was able to remove more than 98% of PCP-Na at concentrations ranging from 10 to 100 mg/L, at empty bed contact time (EBCT) ranging from 0.75 to 4 hours. Pure and mixed cultures from BACCOR were tested for use of PCP as sole carbon and energy source under aerobic conditions. The isolates were able to degrade up to 42% of PCP under aerobic conditions in pure cultures. However, mixed cultures were found able to degrade more than 99% PCP indicating interdependence of species.Keywords: Adsorption, biodegradation, identification, isolated bacteria, pentachlorophenol.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1844805 A Study on Crashworhiness Assessment and Improvement of Tilting Train Made of Sandwich Composites
Authors: Hyung-Jin Jang, Kwang-Bok Shin, Sung-Ho Han
Abstract:
This paper describes the crashworthiness assessment and improvement of tlting train made of sandwich composites. The crashworhiness assessment of tilting train was conducted according to four collision scenarios of the Korean railway safety law. Collision analysis was carried out using explicit finite element analysis code LS-DYNA 3D. The finite element model consists of 3-D finite element model and 1-D equivalent model to save the finite element modeling and calculation time. It found that the crashworthiness analysis results were satisfied with the performance requirements except the crash scenario-2. In order to meet the crashworthiness requirements for crash scenario-2, the stiffness reinforcement for the laminate composite cover and metal frames of cabmask structure were proposed. Consequentially, it has satisfied the requirement for crash scenario-2.
Keywords: Crashworthiness, collision scenario, Korean railway safety law, sandwich composite, tilting train.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2654804 Multilayer Soft Tissue Continuum Model: Towards Realistic Simulation of Facial Expressions
Authors: A. Hung, K. Mithraratne, M. Sagar, P. Hunter
Abstract:
A biophysically based multilayer continuum model of the facial soft tissue composite has been developed for simulating wrinkle formation. The deformed state of the soft tissue block was determined by solving large deformation mechanics equations using the Galerkin finite element method. The proposed soft tissue model is composed of four layers with distinct mechanical properties. These include stratum corneum, epidermal-dermal layer (living epidermis and dermis), subcutaneous tissue and the underlying muscle. All the layers were treated as non-linear, isotropic Mooney Rivlin materials. Contraction of muscle fibres was approximated using a steady-state relationship between the fibre extension ratio, intracellular calcium concentration and active stress in the fibre direction. Several variations of the model parameters (stiffness and thickness of epidermal-dermal layer, thickness of subcutaneous tissue layer) have been considered.
Keywords: Bio-physically based, soft tissue mechanics, facialtissue composite, wrinkling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2195803 A Novel Portable Device for Fast Analysis of Energetic Materials in the Environment
Authors: Jozef Šesták, Zbyněk Večeřa, Vladislav Kahle, Dana Moravcová, Pavel Mikuška, Josef Kellner, František Božek
Abstract:
Construction of portable device for fast analysis of energetic materials is described in this paper. The developed analytical system consists of two main parts: a miniaturized microcolumn liquid chromatograph of unique construction and original chemiluminescence detector. This novel portable device is able to determine selectively most of nitramine- and nitroester-based explosives as well as inorganic nitrates at trace concentrations in water or soil extracts in less than 8 minutes.
Keywords: Portable device, uLC, chemiluminescence, nitramines, nitroesters.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1599802 Ramp Rate and Constriction Factor Based Dual Objective Economic Load Dispatch Using Particle Swarm Optimization
Authors: Himanshu Shekhar Maharana, S. K .Dash
Abstract:
Economic Load Dispatch (ELD) proves to be a vital optimization process in electric power system for allocating generation amongst various units to compute the cost of generation, the cost of emission involving global warming gases like sulphur dioxide, nitrous oxide and carbon monoxide etc. In this dissertation, we emphasize ramp rate constriction factor based particle swarm optimization (RRCPSO) for analyzing various performance objectives, namely cost of generation, cost of emission, and a dual objective function involving both these objectives through the experimental simulated results. A 6-unit 30 bus IEEE test case system has been utilized for simulating the results involving improved weight factor advanced ramp rate limit constraints for optimizing total cost of generation and emission. This method increases the tendency of particles to venture into the solution space to ameliorate their convergence rates. Earlier works through dispersed PSO (DPSO) and constriction factor based PSO (CPSO) give rise to comparatively higher computational time and less good optimal solution at par with current dissertation. This paper deals with ramp rate and constriction factor based well defined ramp rate PSO to compute various objectives namely cost, emission and total objective etc. and compares the result with DPSO and weight improved PSO (WIPSO) techniques illustrating lesser computational time and better optimal solution.
Keywords: Economic load dispatch, constriction factor based particle swarm optimization, dispersed particle swarm optimization, weight improved particle swarm optimization, ramp rate and constriction factor based particle swarm optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1260801 Physico-chemical Treatment of Tar-Containing Wastewater Generated from Biomass Gasification Plants
Authors: Vrajesh Mehta, Anal Chavan
Abstract:
Treatment of tar-containing wastewater is necessary for the successful operation of biomass gasification plants (BGPs). In the present study, tar-containing wastewater was treated using lime and alum for the removal of in-organics, followed by adsorption on powdered activated carbon (PAC) for the removal of organics. Limealum experiments were performed in a jar apparatus and activated carbon studies were performed in an orbital shaker. At optimum concentrations, both lime and alum individually proved to be capable of removing color, total suspended solids (TSS) and total dissolved solids (TDS), but in both cases, pH adjustment had to be carried out after treatment. The combination of lime and alum at the dose ratio of 0.8:0.8 g/L was found to be optimum for the removal of inorganics. The removal efficiency achieved at optimum concentrations were 78.6, 62.0, 62.5 and 52.8% for color, alkalinity, TSS and TDS, respectively. The major advantages of the lime-alum combination were observed to be as follows: no requirement of pH adjustment before and after treatment and good settleability of sludge. Coagulation-precipitation followed by adsorption on PAC resulted in 92.3% chemical oxygen demand (COD) removal and 100% phenol removal at equilibrium. Ammonia removal efficiency was found to be 11.7% during coagulation-flocculation and 36.2% during adsorption on PAC. Adsorption of organics on PAC in terms of COD and phenol followed Freundlich isotherm with Kf = 0.55 & 18.47 mg/g and n = 1.01 & 1.45, respectively. This technology may prove to be one of the fastest and most techno-economically feasible methods for the treatment of tar-containing wastewater generated from BGPs.Keywords: Activated carbon, Alum, Biomass gasification, Coagulation-flocculation, Lime, Tar-containing wastewater.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3672800 Structural and Optical Properties of Pr3+ Doped ZnO and PVA:Zn98Pr2O Nanocomposite Free Standing Film
Authors: Pandiyarajan Thangaraj, Mangalaraja Ramalinga Viswanathan, Karthikeyan Balasubramanian, Héctor D. Mansilla, José Ruiz, David Contreras
Abstract:
In this work, we report, a systematic study on the structural and optical properties of Pr-doped ZnO nanostructures and PVA:Zn98Pr2O polymer matrix nanocomposites free standing films. These particles are synthesized through simple wet chemical route and solution casting technique at room temperature, respectively. Structural studies carried out by X-ray diffraction method confirm that the prepared pure ZnO and Pr doped ZnO nanostructures are in hexagonal wurtzite structure and the microstrain is increased upon doping. TEM analysis reveals that the prepared materials are in sheet like nature. Absorption spectra show free excitonic absorption band at 370 nm and red shift for the Pr doped ZnO nanostructures. The PVA:Zn98Pr2O composite film exhibits both free excitonic and PVA absorption bands at 282 nm. Fourier transform infrared spectral studies confirm the presence of A1 (TO) and E1 (TO) modes of Zn-O bond vibration and the formation of polymer composite materials.
Keywords: Pr doped ZnO, polymer nanocomposites, optical properties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2230799 Investigation on an Innovative Way to Connect RC Beam and Steel Column
Authors: Ahmed H. El-Masry, Mohamed A. Dabaon, Tarek F. El-Shafiey, Abd El-Hakim A. Khalil
Abstract:
An experimental study was performed to investigate the behavior and strength of proposed technique to connect reinforced concrete (RC) beam to steel or composite columns. This approach can practically be used in several types of building construction. In this technique, the main beam of the frame consists of a transfer part (part of beam; Tr.P) and a common reinforcement concrete beam. The transfer part of the beam is connected to the column, whereas the rest of the beam is connected to the transfer part from each side. Four full-scale beam-column connections were tested under static loading. The test parameters were the length of the transfer part and the column properties. The test results show that using of the transfer part technique leads to modify the deformation capabilities for the RC beam and hence it increases its resistance against failure. Increase in length of the transfer part did not necessarily indicate an enhanced behavior. The test results contribute to the characterization of the connection behavior between RC beam - steel column and can be used to calibrate numerical models for the simulation of this type of connection.
Keywords: Composite column, reinforced concrete beam, Steel Column, Transfer Part.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5309798 Investigation of the Properties of Epoxy Modified Binders Based on Epoxy Oligomer with Improved Deformation and Strength Properties
Authors: Hlaing Zaw Oo, N. Kostromina, V. Osipchik, T. Kravchenko, K. Yakovleva
Abstract:
The process of modification of ed-20 epoxy resin synthesized by vinyl-containing compounds is considered. It is shown that the introduction of vinyl-containing compounds into the composition based on epoxy resin ED-20 allows adjusting the technological and operational characteristics of the binder. For improvement of the properties of epoxy resin, following modifiers were selected: polyvinylformalethyl, polyvinyl butyral and composition of linear and aromatic amines (Аramine) as a hardener. Now the big range of hardeners of epoxy resins exists that allows varying technological properties of compositions, and also thermophysical and strength indicators. The nature of the aramin type hardener has a significant impact on the spatial parameters of the mesh, glass transition temperature, and strength characteristics. Epoxy composite materials based on ED-20 modified with polyvinyl butyral were obtained and investigated. It is shown that the composition of resins based on derivatives of polyvinyl butyral and ED-20 allows obtaining composite materials with a higher complex of deformation-strength, adhesion and thermal properties, better water resistance, frost resistance, chemical resistance, and impact strength. The magnitude of the effect depends on the chemical structure, temperature and curing time. In the area of concentrations, where the effect of composite synergy is appearing, the values of strength and stiffness significantly exceed the similar parameters of the individual components of the mixture. The polymer-polymer compositions form their class of materials with diverse specific properties that ensure their competitive application. Coatings with high performance under cyclic loading have been obtained based on epoxy oligomers modified with vinyl-containing compounds.Keywords: Epoxy resins, modification, vinyl-containing compounds, deformation and strength properties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 586797 Methanol Concentration Sensitive SWCNT/Nafion Composites
Authors: Kyongsoo Lee, , Seong-Il Kim, Byeong-Kwon Ju
Abstract:
An aqueous methanol sensor for use in direct methanol fuel cells (DMFCs) applications is demonstrated; the methanol sensor is built using dispersed single-walled carbon nanotubes (SWCNTs) with Nafion117 solution to detect the methanol concentration in water. The study is aimed at the potential use of the carbon nanotubes array as a methanol sensor for direct methanol fuel cells (DMFCs). The concentration of methanol in the fuel circulation loop of a DMFC system is an important operating parameter, because it determines the electrical performance and efficiency of the fuel cell system. The sensor is also operative even at ambient temperatures and responds quickly to changes in the concentration levels of the methanol. Such a sensor can be easily incorporated into the methanol fuel solution flow loop in the DMFC system.Keywords: methanol concentration, SWCNT, nafion composites
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1928796 Selective and Facilitated Transport of Vanadium (VO2 +) Ion through Supported Liquid Membrane and Effects of Membrane Characteristics
Authors: Danial Husseinzadeh
Abstract:
A new supported liquid membrane (SLM) system for the selective transport of VO2 + ions was prepared in this present work. The SLM was a thin porous polyvinylidene difluoride (PVDF) membrane soaked with Di-(2-ethylhexyl) phosphoric acid (D2EHPA) as mobile carrier in Xylene as organic solvent. D2EHPA acts as a highly selective carrier for the uphill transport of VO2 + ions through the SLM. The transport of VO2 + ions reached to 64%. In the presence of P2O7-2 ion as suitable masking agent in the feed solution, the interfering effects of other cations were eliminated.Keywords: Facilitated ion transport, Membrane characteristics, Supported liquid membranes, Vanadium.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1847795 Analysis of Mechanical Properties for AP/HTPB Solid Propellant under Different Loading Conditions
Authors: Walid M. Adel, Liang Guo-Zhu
Abstract:
To investigate the characterization of the mechanical properties of composite solid propellant (CSP) based on hydroxyl-terminated polybutadiene (HTPB) at different temperatures and strain rates, uniaxial tensile tests were conducted over a range of temperatures -60 °C to +76 °C and strain rates 0.000164 to 0.328084 s-1 using a conventional universal testing machine. From the experimental data, it can be noted that the mechanical properties of AP/HTPB propellant are mainly dependent on the applied strain rate and the temperature condition. The stress-strain responses exhibited an initial yielding followed by the viscoelastic phase, which was strongly affected by the strain rate and temperature. It was found that the mechanical properties increased with both increasing strain rate and decreasing temperature. Based on the experimental tests, the master curves of the tensile properties are drawn using predetermined shift factor and the results were discussed. This work is a first step in preliminary investigation the nonlinear viscoelasticity behavior of CSP.
Keywords: AP/HTPB composite solid propellant, mechanical behavior, nonlinear viscoelastic, tensile test, master curves.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2041794 Enhanced Thermal, Mechanical and Morphological Properties of CNT/HDPE Nanocomposite Using MMT as Secondary Filler
Authors: M. E. Ali Mohsin, Agus Arsad, Othman Y. Alothman
Abstract:
This study explains the influence of secondary filler on the dispersion of carbon nanotube (CNT) reinforced high density polyethylene (HDPE) nanocomposites (CNT/HDPE). In order to understand the mixed-fillers system, Montmorillonite (MMT) was added to CNT/HDPE nanocomposites. It was followed by investigating their effect on the thermal, mechanical and morphological properties of the aforesaid nanocomposite. Incorporation of 3 wt% each of MMT into CNT/HDPE nanocomposite resulted to the increased values for the tensile and flexural strength, as compared to the pure HDPE matrix. The thermal analysis result showed improved thermal stability of the formulated nanocomposites. Transmission electron microscopy (TEM) images revealed that larger aggregates of CNTs were disappeared upon addition of these two components leading to the enhancement of thermo-mechanical properties for such composites.
Keywords: Secondary filler, Montmorillonite, Carbon nanotube, nanocomposite.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3233793 Adhesion Problematic for Novel Non-Crimp Fabric and Surface Modification of Carbon-Fibres Using Oxy-Fluorination
Authors: Iris Käppler, Paul Matthäi, Chokri Cherif
Abstract:
In the scope of application of technical textiles, Non- Crimp Fabrics are increasingly used. In general, NCF exhibit excellent load bearing properties, but caused by the manufacturing process, there are some remaining disadvantages which have to be reduced. Regarding to this, a novel technique of processing NCF was developed substituting the binding-thread by an adhesive. This stitchfree method requires new manufacturing concept as well as new basic methods to prove adhesion of glue at fibres and textiles. To improve adhesion properties and the wettability of carbon-fibres by the adhesive, oxy-fluorination was used. The modification of carbonfibres by oxy-fluorination was investigated via scanning electron microscope, X-ray photoelectron spectroscopy and single fibre tensiometry. Special tensile tests were developed to determine the maximum force required for detachment.
Keywords: Non-Crimp Fabric, adhesive, stitch-free, high-performance fibre.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2036792 An Investigation on Material Removal Rate of EDM Process: A Response Surface Methodology Approach
Authors: Azhar Equbal, Anoop Kumar Sood, M. Asif Equbal, M. Israr Equbal
Abstract:
In the present work response surface methodology (RSM) based central composite design (CCD) is used for analyzing the electrical discharge machining (EDM) process. For experimentation, mild steel is selected as work piece and copper is used as electrode. Three machining parameters namely current (I), spark on time (Ton) and spark off time (Toff) are selected as the input variables. The output or response chosen is material removal rate (MRR) which is to be maximized. To reduce the number of runs face centered central composite design (FCCCD) was used. ANOVA was used to determine the significance of parameter and interactions. The suitability of model is tested using Anderson darling (AD) plot. The results conclude that different parameters considered i.e. current, pulse on and pulse off time; all have dominant effect on the MRR. At last, the optimized parameter setting for maximizing MRR is found through main effect plot analysis.
Keywords: Electrical discharge machining, electrode, MRR, RSM, ANOVA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1180791 Tension Stiffening Parameter in Composite Concrete Reinforced with Inoxydable Steel: Laboratory and Finite Element Analysis
Abstract:
In the present work, behavior of inoxydable steel as reinforcement bar in composite concrete is being investigated. The bar-concrete adherence in reinforced concrete (RC) beam is studied and focus is made on the tension stiffening parameter. This study highlighted an approach to observe this interaction behavior in bending test instead of direct tension as per reported in many references. The approach resembles actual loading condition of the structural RC beam. The tension stiffening properties are then applied to numerical finite element analysis (FEA) to verify their correlation with laboratory results. Comparison with laboratory shows a good correlation between the two. The experimental settings is able to determine tension stiffening parameters in RC beam and the modeling strategies made in ABAQUS can closely represent the actual condition. Tension stiffening model used can represent the interaction properties between inoxydable steel and concrete.Keywords: Inoxydable steel, Finite element modeling, Reinforced concrete beam, Tension-stiffening.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4296