WASET
	%0 Journal Article
	%A Vrajesh Mehta and  Anal Chavan
	%D 2009
	%J International Journal of Chemical and Molecular Engineering
	%B World Academy of Science, Engineering and Technology
	%I Open Science Index 33, 2009
	%T Physico-chemical Treatment of Tar-Containing Wastewater Generated from Biomass Gasification Plants
	%U https://publications.waset.org/pdf/15207
	%V 33
	%X Treatment of tar-containing wastewater is necessary
for the successful operation of biomass gasification plants (BGPs). In
the present study, tar-containing wastewater was treated using lime
and alum for the removal of in-organics, followed by adsorption on
powdered activated carbon (PAC) for the removal of organics. Limealum
experiments were performed in a jar apparatus and activated
carbon studies were performed in an orbital shaker. At optimum
concentrations, both lime and alum individually proved to be capable
of removing color, total suspended solids (TSS) and total dissolved
solids (TDS), but in both cases, pH adjustment had to be carried out
after treatment. The combination of lime and alum at the dose ratio
of 0.8:0.8 g/L was found to be optimum for the removal of inorganics.
The removal efficiency achieved at optimum
concentrations were 78.6, 62.0, 62.5 and 52.8% for color, alkalinity,
TSS and TDS, respectively. The major advantages of the lime-alum
combination were observed to be as follows: no requirement of pH
adjustment before and after treatment and good settleability of
sludge. Coagulation-precipitation followed by adsorption on PAC
resulted in 92.3% chemical oxygen demand (COD) removal and
100% phenol removal at equilibrium. Ammonia removal efficiency
was found to be 11.7% during coagulation-flocculation and 36.2%
during adsorption on PAC. Adsorption of organics on PAC in terms
of COD and phenol followed Freundlich isotherm with Kf = 0.55 &
18.47 mg/g and n = 1.01 & 1.45, respectively. This technology may
prove to be one of the fastest and most techno-economically feasible
methods for the treatment of tar-containing wastewater generated
from BGPs.
	%P 463 - 470