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Abstract—Economic Load Dispatch (ELD) proves to be a vital 
optimization process in electric power system for allocating 
generation amongst various units to compute the cost of generation, 
the cost of emission involving global warming gases like sulphur 
dioxide, nitrous oxide and carbon monoxide etc. In this dissertation, 
we emphasize ramp rate constriction factor based particle swarm 
optimization (RRCPSO) for analyzing various performance 
objectives, namely cost of generation, cost of emission, and a dual 
objective function involving both these objectives through the 
experimental simulated results. A 6-unit 30 bus IEEE test case 
system has been utilized for simulating the results involving 
improved weight factor advanced ramp rate limit constraints for 
optimizing total cost of generation and emission. This method 
increases the tendency of particles to venture into the solution space 
to ameliorate their convergence rates. Earlier works through 
dispersed PSO (DPSO) and constriction factor based PSO (CPSO) 
give rise to comparatively higher computational time and less good 
optimal solution at par with current dissertation. This paper deals 
with ramp rate and constriction factor based well defined ramp rate 
PSO to compute various objectives namely cost, emission and total 
objective etc. and compares the result with DPSO and weight 
improved PSO (WIPSO) techniques illustrating lesser computational 
time and better optimal solution.  
 

Keywords—Economic load dispatch, constriction factor based 
particle swarm optimization, dispersed particle swarm optimization, 
weight improved particle swarm optimization, ramp rate and 
constriction factor based particle swarm optimization. 

I. INTRODUCTION 

NTERCONNECTED electric utility is basically meant for 
attaining minimum cost of generation and emission through 

a combined objective function satisfying the equality and 
inequality constraints involving well defined down ramp rate 
limits and up ramp rate limits with proper constriction factor 
nonlinear behavior of cost and emission function. The impact 
of valve point loading gives rise to more perturbation in cost 
function which can be piecewise-linearized using conventional 
dispatch techniques. Advanced constriction factor based well 
defined ramp rate particle swarm optimization (PSO) [17] 
approach employing heuristic principle is a population-based 
evolutionary programming technique employing flocks of 
birds. The added feature through an improved constriction 
factor has been used to optimize the cost of generation and 
environmental emission for reducing global warming to great 
extent. The feasibility of proposed method was demonstrated 
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for a 6-generating unit system through 30 bus IEEE test case 
systems. The results obtained through the proposed method 
were compared with various conventional methods like 
Lagrange multiplier method [6], [7], mixed integer linear 
programming method, evolutionary programming method [8]-
[10] and quadratic programming method, etc. References [1]-
[5] as well with various heuristic methods like PSO, DPSO, 
WIPSO, etc. 

II. METHODOLOGY 

This section forecasts the objective function viz. cost, 
emission, and combined objective function satisfying equality 

and inequality constraints involving price penalty factor iF . 

The basic ELD problem is formulated through (1) and (2), 
 

2( ) sin( ( ))i i i i i i i i i iZ aPG bPG C K l P PG    
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where iZ  and iJ  are the cost and emission objective 

functions, and ia , ib , ic , iK , il  and ih , ig , iq are the cost 

and emission  objective function coefficients. In this 
dissertation, the emission function involves global warming 
gases like NO2 and SO2. The ultimate objective function 
involving combined objective formulation encompassing cost 
as well as emission objective function through price penalty 

factor iF  is formulated as (3). 
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The constraints involved in this work are  

i. Equality constraint  
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where DP  = net power demand. 
 

TL=
6 6

1 1
m n mn

m n

PG PG B
 

 
 

 
where TL is transmission loss. 
ii. Inequality constraint 
 

i i jP PG P                                         (8)
 

 

where 
iPG  represents the output power of thi  generating unit, 

iP  and jP  are the minimum and maximum output power of 

thi generating unit, respectively. 

III. OVERVIEW OF RAMP RATE CONSTRICTION FACTOR BASED 

PSO 

PSO [11], [12] first propounded by Kennedy and Ebert 
formed the behavior of evolutionary techniques for ELD 
optimization. Intersecting the valve point strategy employed in 
the multi objective generation dispatch the nonlinear 
characteristics of cost objective function and that of emission 
objective function as well become a challenging issue for ELD 
optimization. So, in order to obtain optimistic results of 
nonlinear optimization technique, we incorporate here a ramp 
rate limit that outsmarts the ordinary inequality constraints 
through advanced constriction factor based well defined ramp 
rate PSO technique. This method involves dispersed particles, 
i.e. swarms [13], [14] in search space randomly updating their 
position using their velocity heuristically resembling their 
neighbors so as to obtain position and velocity vectors viz. 

bestP
 

and bestg , i.e. ( bestP1 , 2bestP ….. ibestP ) and 

( bestg1 , bestg 2 ….. ibestg ) respectively. The updated values of 

position and velocity are computed using (9) and (10). 
 

( 1)
2 1 1 1 0 2 2[ ( ) ( )]k k k k
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where 21,CC  are acceleration coefficients, W = Inertia 

weight, 1k
iV = Updated velocity of the k+1 iteration, L0 = 

bestP
 
function, k

iS  = Initial thi  particle after thk  iteration, 

1C R and 1 )( k
ibest SP   = Particle’s Private thinking, 2C R 

and 2 )( k
ibest Sg  = Collaboration amongst particles 
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K = Maximum number of iterations, n = Iteration number, 

maxW  = Initial Weight in per unit = 0.85, minW = Final 

Weight in per unit = 0.35. To optimize the valve point loading 
effect, the ramp rate constraints are imposed upon the iteration 
inequality constraints as under. 
 

min 0 max 1( , ) ( , )i i i inew i i iMax PG P DR PG Min PG P UR   
 
(12) 

 
Subject to condition that 

iigi URPP  0  
(Generation 

increases) 
 

0 1i i iP P D R   
(Generation decreases)         (13) 

 

where 1iP  = Power generation of thi  unit in the current 

interval and 0iP  = Power generation of thi  unit just before the 

interval 
Looking into the valve point loading, a constriction factor 

finds use in advanced constriction factor-based well defined 
ramp rate PSO algorithm given by, 
 

CF=
3 2

4

4 3 2.2      
               (14)

 
 
where   lies between 2.1 and 3.1. 

As  rises, CF decreases giving rise to slower convergence 
because of diminished population velocity up-gradation using 
(14) 
 

( 1)
2 1 1 1 0 2 2[ ( ) ( )]k k k k

n n i best iY CF WY C Rand L S C Rand g S     
    (15) 

A. RRCPSO Algorithm 

Step 1) Initialize parameters like: 

 

654321 ,,,,, PGPGPGPGPGPG
 

 

Step 2) If iL  is better than 0L , then  

 

newi LL 0
         

Else          oldi LL 0  

 

Step 3) Initialize bestg  values for generating units 1PG  to 

6PG  

Step 4) Assign best of inewL and oldL0  to bestg  

Step 5) Current position iiii JFZS  and     current 

velocity 
 

)()( minmaxmin1 iiin UURandiUY 
 

 
Step 6) Update position for each particle  
 

)1(
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n
k
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where 1
2
k

nY  is the update velocity for each particle 

Step 7) If particle position is greater than or equal to bounds 
in (12) then stop otherwise go to step 2. 

IV. RESULT ANALYSIS 

The results obtained for the proposed RRCPSO method 
(Fig. 1) for various objectives viz. cost, emission [16] and 
combined objective for the IEEE 30 bus test case system 
through Fig. 1 suggest that beyond 200 MW cost as well as 
emission objective yields better performance over the classical 
methods like lambda iteration, mixed integer with linear 
programming method, and quadratic method, etc. It also 
outperforms heuristic methods like PSO [15], WIPSO, and 
DPSO, etc. as illustrated through results obtained in Table III 
The Simulink model (Fig. 2) and simulated results (over 30 
sec) for these objectives (Figs. 3-5) for a thermal power plant 
yield better performance over other heuristic method. 

 
TABLE I 

COST COEFFICIENTS, UNIT CAPACITY AND EMISSION COEFFICIENTS FOR IEEE 

30 BUS TEST CASE SYSTEM WITH 6 GENERATING UNIT 

Unit ia  ib  ic  maxi iP P  

1 0.1424 37.439 755.80 125 
2 0.0958 45.144 455.325 170 
3 0.0180 39.385 1048.88 225 
4 0.0025 37.304 1235.55 235 
5 0.0111 35.326 1656.56 320 
6 0.0169 37.250 1355.65 390 

Unit mini iP P  
ih  ig  iq  

1 15 0.0039 0.3266 13.84932 
2 10 0.0040 0.32667 13.84932 
3 30 0.00673 -0.54771 40.2709 
4 30 0.00103 -0.54.651 40.2709 
5 135 0.00501 -0.5119 42.88553 
6 130 0.00501 -0.5119 42.88553 

 
TABLE II 

RESULT OF 6-UNIT SYSTEM FOR A LOAD DEMAND OF 1200 MW 

INCORPORATING TRANSMISSION LOSS 

Unit Power Output PSO WIPSO DPSO ACWRRPSO 

PG1 (MW) 49.22 50.02 93.02 120 

PG2 (MW) 18.84 20.88 100.02 130 

PG3 (MW) 108.85 110.09 95.00 150 

PG4 (MW) 58.88 60.34 150.47 200 

PG5 (MW) 208.81 210.62 200.05 250 

PG6 (MW) 307.13 308.58 270.55 350 

Loss (MW) 55.78 58.89 62.57 46.69 

Total Power output 807.51 819.42 971.68 1200 

Fuel cost($/h) 61115.0 62120.09 63629.22 59626 

Emission(T/h) 1026.23 1033.477 1043.458 1020.307 

Total cost($/h) 100702 100719 100922 100611 

 
TABLE III 

PARAMETERS OF A 6-UNIT TEST CASE THERMAL SYSTEM 
Frequency (f) = 60 HZ 

Tg1=Tg2=0.8 s 
P tie max=350 MW 

Tr1=Tr2= 10 s 
Kr1=Kr2 = 0.5 
Tt1=Tt2= 0.3 

Kp1=Kp2=120 Hz/ PU MW 
Tp1=Tp2 = 1 S, a = -0.5; a12 = -0.5 

TABLE IV 
OPTIMAL SYSTEM PARAMETERS INCORPORATING RRCPSO TECHNIQUE 

Areas under 
interconnections 

Optimal 
Parameters 

Optimal System 
Parameters using 

ACWRRPSO technique 

Thermal Power 
system-1 

Kp1 120 

Ki1 0.02 

B1 1 

R1 1 

Thermal Power 
system-2 

Kp2 120 

Ki2 0.02 

B2 1 

R2 1 

Thermal Power 
system- 3 

Kp3 120 

Ki3 0.02 

B3 1 

R3 1 

Thermal Power 
system- 4 

Kp4 120 

Ki4 0.02 

B4 1 

R4 1 

Thermal Power 
system- 5 

Kp5 120 

Ki5 0.02 

B5 1 

R5 1 

 Thermal Power 
system- 6 

Kp6 120 

Ki6 0.02 

B6 1 

R6 1 

 
TABLE V 

OPTIMAL PARAMETERS FOR RRCPSO TECHNIQUE FOR 6 UNIT TEST CASE 

THERMAL SYSTEM 

Sl. No. Description of parameters 
Symbol 

used 
Optimal value 
of parameters 

1 Constriction factor CF 2.9 

2 Acceleration coefficients C1,C2 2.1 

3 Minimum Inertia weight W min 0.35 

4 Maximum Inertia weight W max 0.85 

5 Number of iterations K 100 

6 Random values R1,R2,Ri 0.3,0.7,0.5 

7 Power Demands PD 1200 MW 

8 
Power generation of

thi  
unit just before the 

current interval 

Pi0 80 

9 
Down Ramp rate limit of 

thi  unit 
iDR  44 

10 
UP Ramp rate limit of 

thi  unit 
iUR  1244 

 
TABLE VI 

TRANSMISSION LOSS COEFFICIENTS FOR 6-UNIT TEST 
CASE THERMAL SYSTEM 

Unit 
B coefficients (Bi j) 

1 2 3 4 5 6 

1 1.39 0.16 0.14 0.18 0.25 0.21 

2 0.16 0.59 0.12 0.15 0.14 0.19 

3 0.141 0.12 0.64 0.16 0.23 0.18 

4 0.18 0.15 0.16 0.61 0.29 0.24 

5 0.25 0.14 0.23 0.29 0.68 0.31 

6 0.21 0.19 0.18 0.24 0.31 0.84 
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A. Various Objective Functions  

   

                                                  

(a)                                                 (b)                                                  (c)  

Fig. 1 (a) Operating cost function vs Output Power, (b) Emission level vs Output Power, (c) Total objective function vs. Output power for 30 
number of iterations 

B. Simulink Model  

 
Fig. 2 Simulink Model of various objectives for a thermal power plant 

 

 
Time (12 seconds) 

Fig. 3 Fuel cost function of the RRCPSO for 6-generator 30 bus 
IEEE test case system for demand of 1200 MW 

 
Time (12 seconds) 

Fig. 4 Emission function for 6-unit 30 bus IEEE test case system 
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Time (12 seconds) 

Fig. 5 Combined objective function for 6-unit 30 bus IEEE test case 
system 

V. CONCLUSION 

The proposed method RRCPSO presented advanced PSO 
technique involving valve point loading, ramp rate constraints, 
constriction factor based swarm optimization tool box for 
analyzing the economic dispatch problem. The results of this 
analysis (Tables I-VI) outperform classical methods like 
lambda iteration method, mixed integer linear programming 
method (MILP), quadratic programming method, etc., and 
heuristic methods like PSO, WIPSO, DPSO, etc. in terms of 
computational time for better optimal solution. 
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