Search results for: time domain reflectometry measurement technique
9358 Adaptive and Personalizing Learning Sequence Using Modified Roulette Wheel Selection Algorithm
Authors: Melvin A. Ballera
Abstract:
Prior literature in the field of adaptive and personalized learning sequence in e-learning have proposed and implemented various mechanisms to improve the learning process such as individualization and personalization, but complex to implement due to expensive algorithmic programming and need of extensive and prior data. The main objective of personalizing learning sequence is to maximize learning by dynamically selecting the closest teaching operation in order to achieve the learning competency of learner. In this paper, a revolutionary technique has been proposed and tested to perform individualization and personalization using modified reversed roulette wheel selection algorithm that runs at O(n). The technique is simpler to implement and is algorithmically less expensive compared to other revolutionary algorithms since it collects the dynamic real time performance matrix such as examinations, reviews, and study to form the RWSA single numerical fitness value. Results show that the implemented system is capable of recommending new learning sequences that lessens time of study based on student's prior knowledge and real performance matrix.Keywords: E-learning, fitness value, personalized learning sequence, reversed roulette wheel selection algorithms.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20279357 Visual Hull with Imprecise Input
Authors: Peng He
Abstract:
Imprecision is a long-standing problem in CAD design and high accuracy image-based reconstruction applications. The visual hull which is the closed silhouette equivalent shape of the objects of interest is an important concept in image-based reconstruction. We extend the domain-theoretic framework, which is a robust and imprecision capturing geometric model, to analyze the imprecision in the output shape when the input vertices are given with imprecision. Under this framework, we show an efficient algorithm to generate the 2D partial visual hull which represents the exact information of the visual hull with only basic imprecision assumptions. We also show how the visual hull from polyhedra problem can be efficiently solved in the context of imprecise input.Keywords: Geometric Domain, Computer Vision, Computational Geometry, Visual Hull, Image-Based reconstruction, Imprecise Input, CAD object
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14779356 Time Overrun in Pre-Construction Planning Phase of Construction Projects
Authors: Hafiz Usama Imad, Muhammad Akram Akhund, Tauha Hussain Ali, Ali Raza Khoso, Fida Hussain Siddiqui
Abstract:
Construction industry plays a significant role in fulfilling the major requirements of the human being. It is one of the major constituents of every developed country. Although the construction industry of both the developing and developed countries encompasses a major part of the economy, and millions of rupees are utilized every year on various kinds of construction projects. But, this industry is facing numerous hurdles in terms of its budget and timely completion. Construction projects generally consist of several phases like planning, designing, execution, and finishing. This research study aims to determine the significant factors of time overrun in pre-construction planning (PCP) phase of construction projects in Pakistan. Questionnaires were distributed by various means and responses of respondents were compiled and collected data were then analyzed through a statistical technique using SPSS version 24. Major causes of time overrun in pre-construction planning phase; which is an extremely important phase of construction projects, were revealed. The research conclusion will provide a pathway for stakeholders to pay attention to the mentioned causes to overcome the major issue of time overrun.
Keywords: Construction industry, Pakistan, pre-construction planning phase, time overrun.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9699355 Incorporating Multiple Supervised Learning Algorithms for Effective Intrusion Detection
Authors: Umar Albalawi, Sang C. Suh, Jinoh Kim
Abstract:
As internet continues to expand its usage with an enormous number of applications, cyber-threats have significantly increased accordingly. Thus, accurate detection of malicious traffic in a timely manner is a critical concern in today’s Internet for security. One approach for intrusion detection is to use Machine Learning (ML) techniques. Several methods based on ML algorithms have been introduced over the past years, but they are largely limited in terms of detection accuracy and/or time and space complexity to run. In this work, we present a novel method for intrusion detection that incorporates a set of supervised learning algorithms. The proposed technique provides high accuracy and outperforms existing techniques that simply utilizes a single learning method. In addition, our technique relies on partial flow information (rather than full information) for detection, and thus, it is light-weight and desirable for online operations with the property of early identification. With the mid-Atlantic CCDC intrusion dataset publicly available, we show that our proposed technique yields a high degree of detection rate over 99% with a very low false alarm rate (0.4%).
Keywords: Intrusion Detection, Supervised Learning, Traffic Classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20359354 Understanding the Discharge Activities in Transformer Oil under AC and DC Voltage Adopting UHF Technique
Authors: R. Sarathi, G. Koperundevi
Abstract:
Design of Converter transformer insulation is a major challenge. The insulation of these transformers is stressed by both AC and DC voltages. Particle contamination is one of the major problems in insulation structures, as they generate partial discharges leading it to major failure of insulation. Similarly corona discharges occur in transformer insulation. This partial discharge due to particle movement / corona formation in insulation structure under different voltage wave shapes, are different. In the present study, UHF technique is adopted to understand the discharge activity and could be realized that the characteristics of UHF signal generated under low and high fields are different. In the case of corona generated signal, the frequency content of the UHF sensor output lies in the range 0.3-1.2 GHz and is not much varied except for its increase in magnitude of discharge with the increase in applied voltage. It is realized that the current signal injected due to partial discharges/corona is about 4ns duration measured for first one half cycle. Wavelet technique is adopted in the present study. It allows one to identify the frequency content present in the signal at different instant of time. The STD-MRA analysis helps one to identify the frequency band in which the energy content of the UHF signal is maximum.Keywords: Contamination, Insulation, Partial Discharges, Transformer oil, UHF sensors.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 38419353 An Analysis of Compression Methods and Implementation of Medical Images in Wireless Network
Authors: C. Rajan, K. Geetha, S. Geetha
Abstract:
The motivation of image compression technique is to reduce the irrelevance and redundancy of the image data in order to store or pass data in an efficient way from one place to another place. There are several types of compression methods available. Without the help of compression technique, the file size is knowingly larger, usually several megabytes, but by doing the compression technique, it is possible to reduce file size up to 10% as of the original without noticeable loss in quality. Image compression can be lossless or lossy. The compression technique can be applied to images, audio, video and text data. This research work mainly concentrates on methods of encoding, DCT, compression methods, security, etc. Different methodologies and network simulations have been analyzed here. Various methods of compression methodologies and its performance metrics has been investigated and presented in a table manner.Keywords: Image compression techniques, encoding, DCT, lossy compression, lossless compression, JPEG.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11889352 A Novel Digital Calibration Technique for Gain and Offset Mismatch in TIΣΔ ADCs
Authors: Ali Beydoun, Van-Tam Nguyen, Patrick Loumeau
Abstract:
Time interleaved sigma-delta (TIΣΔ) architecture is a potential candidate for high bandwidth analog to digital converters (ADC) which remains a bottleneck for software and cognitive radio receivers. However, the performance of the TIΣΔ architecture is limited by the unavoidable gain and offset mismatches resulting from the manufacturing process. This paper presents a novel digital calibration method to compensate the gain and offset mismatch effect. The proposed method takes advantage of the reconstruction digital signal processing on each channel and requires only few logic components for implementation. The run time calibration is estimated to 10 and 15 clock cycles for offset cancellation and gain mismatch calibration respectively.Keywords: sigma-delta, calibration, gain and offset mismatches, analog-to-digital conversion, time-interleaving.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 55289351 Towards Design of Context-Aware Sensor Grid Framework for Agriculture
Authors: Aqeel-ur-Rehman, Zubair A. Shaikh
Abstract:
This paper is to present context-aware sensor grid framework for agriculture and its design challenges. Use of sensor networks in the domain of agriculture is not new. However, due to the unavailability of any common framework, solutions that are developed in this domain are location, environment and problem dependent. Keeping the need of common framework for agriculture, Context-Aware Sensor Grid Framework is proposed. It will be helpful in developing solutions for majority of the problems related to irrigation, pesticides spray, use of fertilizers, regular monitoring of plot and yield etc. due to the capability of adjusting according to location and environment. The proposed framework is composed of three layer architecture including context-aware application layer, grid middleware layer and sensor network layer.Keywords: Agriculture, Context-Awareness, Grid Computing, and Sensor Grid.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25759350 A Genetic Algorithm Approach Considering Zero Injection Bus Constraint Modeling for Optimal Phasor Measurement Unit Placement
Authors: G. Chandana Sushma, T. R. Jyothsna
Abstract:
This paper presents optimal Phasor Measurement Unit (PMU) Placement in network using a genetic algorithm approach as it is infeasible and require high installation cost to place PMUs at every bus in network. This paper proposes optimal PMU allocation considering observability and redundancy utilizing Genetic Algorithm (GA) approach. The nonlinear constraints of buses are modeled to give accurate results. Constraints associated with Zero Injection (ZI) buses and radial buses are modeled to optimize number of locations for PMU placement. GA is modeled with ZI bus constraints to minimize number of locations without losing complete observability. Redundancy of every bus in network is computed to show optimum redundancy of complete system network. The performance of method is measured by Bus Observability Index (BOI) and Complete System Observability Performance Index (CSOPI). MATLAB simulations are carried out on IEEE -14, -30 and -57 bus-systems and compared with other methods in literature survey to show the effectiveness of the proposed approach.
Keywords: Constraints, genetic algorithm, observability, phasor measurement units, redundancy, synchrophasors, zero injection bus.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7849349 Probabilistic Wavelet Neural Network Based Vibration Analysis of Induction Motor Drive
Authors: K. Jayakumar, S. Thangavel
Abstract:
In this paper proposed the effective fault detection of industrial drives by using Biorthogonal Posterior Vibration Signal-Data Probabilistic Wavelet Neural Network (BPPVS-WNN) system. This system was focused to reducing the current flow and to identify faults with lesser execution time with harmonic values obtained through fifth derivative. Initially, the construction of Biorthogonal vibration signal-data based wavelet transform in BPPVS-WNN system localizes the time and frequency domain. The Biorthogonal wavelet approximates the broken bearing using double scaling and factor, identifies the transient disturbance due to fault on induction motor through approximate coefficients and detailed coefficient. Posterior Probabilistic Neural Network detects the final level of faults using the detailed coefficient till fifth derivative and the results obtained through it at a faster rate at constant frequency signal on the industrial drive. Experiment through the Simulink tool detects the healthy and unhealthy motor on measuring parametric factors such as fault detection rate based on time, current flow rate, and execution time.Keywords: Biorthogonal Wavelet Transform, Posterior Probabilistic Neural Network, Induction Motor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10199348 A FE-Based Scheme for Computing Wave Interaction with Nonlinear Damage and Generation of Harmonics in Layered Composite Structures
Authors: R. K. Apalowo, D. Chronopoulos
Abstract:
A Finite Element (FE) based scheme is presented for quantifying guided wave interaction with Localised Nonlinear Structural Damage (LNSD) within structures of arbitrary layering and geometric complexity. The through-thickness mode-shape of the structure is obtained through a wave and finite element method. This is applied in a time domain FE simulation in order to generate time harmonic excitation for a specific wave mode. Interaction of the wave with LNSD within the system is computed through an element activation and deactivation iteration. The scheme is validated against experimental measurements and a WFE-FE methodology for calculating wave interaction with damage. Case studies for guided wave interaction with crack and delamination are presented to verify the robustness of the proposed method in classifying and identifying damage.Keywords: Layered Structures, nonlinear ultrasound, wave interaction with nonlinear damage, wave finite element, finite element.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5449347 Warning about the Risk of Blood Flow Stagnation after Transcatheter Aortic Valve Implantation
Authors: Aymen Laadhari, Gábor Székely
Abstract:
In this work, the hemodynamics in the sinuses of Valsalva after Transcatheter Aortic Valve Implantation is numerically examined. We focus on the physical results in the two-dimensional case. We use a finite element methodology based on a Lagrange multiplier technique that enables to couple the dynamics of blood flow and the leaflets’ movement. A massively parallel implementation of a monolithic and fully implicit solver allows more accuracy and significant computational savings. The elastic properties of the aortic valve are disregarded, and the numerical computations are performed under physiologically correct pressure loads. Computational results depict that blood flow may be subject to stagnation in the lower domain of the sinuses of Valsalva after Transcatheter Aortic Valve Implantation.
Keywords: Hemodynamics, Transcatheter Aortic Valve Implantation, blood flow stagnation, numerical simulations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10979346 Performance Assessment and Optimization of the After-Sale Networks
Authors: H. Izadbakhsh, M.Hour Ali, A. Amirkhani, A. Montazeri, M. Saberi
Abstract:
The after–sales activities are nowadays acknowledged as a relevant source of revenue, profit and competitive advantage in most manufacturing industries. Top and middle management, therefore, should focus on the definition of a structured business performance measurement system for the after-sales business. The paper aims at filling this gap, and presents an integrated methodology for the after-sales network performance measurement, and provides an empirical application to automotive case companies and their official service network. This is the first study that presents an integrated multivariate approach for total assessment and improvement of after-sale services.Keywords: Data Envelopment Analysis (DEA), Principal Component Analysis (PCA), Automotive companies, After-sale services.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18859345 Establishing a Probabilistic Model of Extrapolated Wind Speed Data for Wind Energy Prediction
Authors: Mussa I. Mgwatu, Reuben R. M. Kainkwa
Abstract:
Wind is among the potential energy resources which can be harnessed to generate wind energy for conversion into electrical power. Due to the variability of wind speed with time and height, it becomes difficult to predict the generated wind energy more optimally. In this paper, an attempt is made to establish a probabilistic model fitting the wind speed data recorded at Makambako site in Tanzania. Wind speeds and direction were respectively measured using anemometer (type AN1) and wind Vane (type WD1) both supplied by Delta-T-Devices at a measurement height of 2 m. Wind speeds were then extrapolated for the height of 10 m using power law equation with an exponent of 0.47. Data were analysed using MINITAB statistical software to show the variability of wind speeds with time and height, and to determine the underlying probability model of the extrapolated wind speed data. The results show that wind speeds at Makambako site vary cyclically over time; and they conform to the Weibull probability distribution. From these results, Weibull probability density function can be used to predict the wind energy.Keywords: Probabilistic models, wind speed, wind energy
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23479344 Similarity Measure Functions for Strategy-Based Biometrics
Authors: Roman V. Yampolskiy, Venu Govindaraju
Abstract:
Functioning of a biometric system in large part depends on the performance of the similarity measure function. Frequently a generalized similarity distance measure function such as Euclidian distance or Mahalanobis distance is applied to the task of matching biometric feature vectors. However, often accuracy of a biometric system can be greatly improved by designing a customized matching algorithm optimized for a particular biometric application. In this paper we propose a tailored similarity measure function for behavioral biometric systems based on the expert knowledge of the feature level data in the domain. We compare performance of a proposed matching algorithm to that of other well known similarity distance functions and demonstrate its superiority with respect to the chosen domain.Keywords: Behavioral Biometrics, Euclidian Distance, Matching, Similarity Measure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16519343 Detection of Voltage Sag and Voltage Swell in Power Quality Using Wavelet Transforms
Authors: Nor Asrina Binti Ramlee
Abstract:
Voltage sag, voltage swell, high-frequency noise and voltage transients are kinds of disturbances in power quality. They are also known as power quality events. Equipment used in the industry nowadays has become more sensitive to these events with the increasing complexity of equipment. This leads to the importance of distributing clean power quality to the consumer. To provide better service, the best analysis on power quality is very vital. Thus, this paper presents the events detection focusing on voltage sag and swell. The method is developed by applying time domain signal analysis using wavelet transform approach in MATLAB. Four types of mother wavelet namely Haar, Dmey, Daubechies, and Symlet are used to detect the events. This project analyzed real interrupted signal obtained from 22 kV transmission line in Skudai, Johor Bahru, Malaysia. The signals will be decomposed through the wavelet mothers. The best mother is the one that is capable to detect the time location of the event accurately.
Keywords: Power quality, voltage sag, voltage swell, wavelet transform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15679342 Energy Performance of Buildings Due to Downscaled Seasonal Models
Authors: Anastasia K. Eleftheriadou, Athanasios Sfetsos, Nikolaos Gounaris
Abstract:
The current paper presents an extensive bottom-up framework for assessing building sector-specific vulnerability to climate change: energy supply and demand. The research focuses on the application of downscaled seasonal models for estimating energy performance of buildings in Greece. The ARW-WRF model has been set-up and suitably parameterized to produce downscaled climatological fields for Greece, forced by the output of the CFSv2 model. The outer domain, D01/Europe, included 345 x 345 cells of horizontal resolution 20 x 20 km2 and the inner domain, D02/Greece, comprised 180 x 180 cells of 5 x 5 km2 horizontal resolution. The model run has been setup for a period with a forecast horizon of 6 months, storing outputs on a six hourly basis.Keywords: Urban environment, vulnerability, climate change, energy performance, seasonal forecast models.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17439341 Inner Quality Parameters of Rapeseed (Brassica napus) Populations in Different Sowing Technology Models
Authors: É. Vincze
Abstract:
Demand on plant oils has increased to an enormous extent that is due to the change of human nutrition habits on the one hand, while on the other hand to the increase of raw material demand of some industrial sectors, just as to the increase of biofuel production. Besides the determining importance of sunflower in Hungary the production area, just as in part the average yield amount of rapeseed has increased among the produced oil crops. The variety/hybrid palette has changed significantly during the past decade. The available varieties’/hybrids’ palette has been extended to a significant extent. It is agreed that rapeseed production demands professionalism and local experience. Technological elements are successive; high yield amounts cannot be produced without system-based approach. The aim of the present work was to execute the complex study of one of the most critical production technology element of rapeseed production, that was sowing technology. Several sowing technology elements are studied in this research project that are the following: biological basis (the hybrid Arkaso is studied in this regard), sowing time (sowing time treatments were set so that they represent the wide period used in industrial practice: early, optimal and late sowing time) plant density (in this regard reaction of rare, optimal and too dense populations) were modelled. The multifactorial experimental system enables the single and complex evaluation of rapeseed sowing technology elements, just as their modelling using experimental result data. Yield quality and quantity have been determined as well in the present experiment, just as the interactions between these factors. The experiment was set up in four replications at the Látókép Plant Production Research Site of the University of Debrecen. Two different sowing times were sown in the first experimental year (2014), while three in the second (2015). Three different plant densities were set in both years: 200, 350 and 500 thousand plants ha-1. Uniform nutrient supply and a row spacing of 45 cm were applied. Winter wheat was used as pre-crop. Plant physiological measurements were executed in the populations of the Arkaso rapeseed hybrid that were: relative chlorophyll content analysis (SPAD) and leaf area index (LAI) measurement. Relative chlorophyll content (SPAD) and leaf area index (LAI) were monitored in 7 different measurement times.
Keywords: Inner quality, plant density, rapeseed, sowing time.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7869340 A Genetic-Neural-Network Modeling Approach for Self-Heating in GaN High Electron Mobility Transistors
Authors: Anwar Jarndal
Abstract:
In this paper, a genetic-neural-network (GNN) based large-signal model for GaN HEMTs is presented along with its parameters extraction procedure. The model is easy to construct and implement in CAD software and requires only DC and S-parameter measurements. An improved decomposition technique is used to model self-heating effect. Two GNN models are constructed to simulate isothermal drain current and power dissipation, respectively. The two model are then composed to simulate the drain current. The modeling procedure was applied to a packaged GaN-on-Si HEMT and the developed model is validated by comparing its large-signal simulation with measured data. A very good agreement between the simulation and measurement is obtained.
Keywords: GaN HEMT, computer-aided design & modeling, neural networks, genetic optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16599339 Optimization by Means of Genetic Algorithm of the Equivalent Electrical Circuit Model of Different Order for Li-ion Battery Pack
Authors: V. Pizarro-Carmona, S. Castano-Solis, M. Cortés-Carmona, J. Fraile-Ardanuy, D. Jimenez-Bermejo
Abstract:
The purpose of this article is to optimize the Equivalent Electric Circuit Model (EECM) of different orders to obtain greater precision in the modeling of Li-ion battery packs. Optimization includes considering circuits based on 1RC, 2RC and 3RC networks, with a dependent voltage source and a series resistor. The parameters are obtained experimentally using tests in the time domain and in the frequency domain. Due to the high non-linearity of the behavior of the battery pack, Genetic Algorithm (GA) was used to solve and optimize the parameters of each EECM considered (1RC, 2RC and 3RC). The objective of the estimation is to minimize the mean square error between the measured impedance in the real battery pack and those generated by the simulation of different proposed circuit models. The results have been verified by comparing the Nyquist graphs of the estimation of the complex impedance of the pack. As a result of the optimization, the 2RC and 3RC circuit alternatives are considered as viable to represent the battery behavior. These battery pack models are experimentally validated using a hardware-in-the-loop (HIL) simulation platform that reproduces the well-known New York City cycle (NYCC) and Federal Test Procedure (FTP) driving cycles for electric vehicles. The results show that using GA optimization allows obtaining EECs with 2RC or 3RC networks, with high precision to represent the dynamic behavior of a battery pack in vehicular applications.
Keywords: Li-ion battery packs modeling optimized, EECM, GA, electric vehicle applications.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5449338 Speech Coding and Recognition
Authors: M. Satya Sai Ram, P. Siddaiah, M. Madhavi Latha
Abstract:
This paper investigates the performance of a speech recognizer in an interactive voice response system for various coded speech signals, coded by using a vector quantization technique namely Multi Switched Split Vector Quantization Technique. The process of recognizing the coded output can be used in Voice banking application. The recognition technique used for the recognition of the coded speech signals is the Hidden Markov Model technique. The spectral distortion performance, computational complexity, and memory requirements of Multi Switched Split Vector Quantization Technique and the performance of the speech recognizer at various bit rates have been computed. From results it is found that the speech recognizer is showing better performance at 24 bits/frame and it is found that the percentage of recognition is being varied from 100% to 93.33% for various bit rates.Keywords: Linear predictive coding, Speech Recognition, Voice banking, Multi Switched Split Vector Quantization, Hidden Markov Model, Linear Predictive Coefficients.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18469337 Buzan Mind Mapping: An Efficient Technique for Note-Taking
Authors: T. K. Tee, M. N. A. Azman, S. Mohamed, Muhammad, M., M. M. Mohamad, J. Md Yunos, M. H. Yee, W. Othman
Abstract:
Buzan mind mapping is an efficient system of note-taking that makes revision a fun thing to do for students. Tony Buzan has been teaching children all over the world for the past thirty years and has proved that mind maps are the magic formula in the classroom for everyone. The purpose of this paper is to discuss the importance of Buzan mind mapping as a note-taking technique for the secondary school students. This paper also examines the mind mapping technique, advantages and disadvantages of hand-drawn mind maps. Samples of students’ mind maps were presented and discussed.
Keywords: Buzan Mind Mapping, note-taking technique, hand-drawn mind maps.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 93909336 In Search of an SVD and QRcp Based Optimization Technique of ANN for Automatic Classification of Abnormal Heart Sounds
Authors: Samit Ari, Goutam Saha
Abstract:
Artificial Neural Network (ANN) has been extensively used for classification of heart sounds for its discriminative training ability and easy implementation. However, it suffers from overparameterization if the number of nodes is not chosen properly. In such cases, when the dataset has redundancy within it, ANN is trained along with this redundant information that results in poor validation. Also a larger network means more computational expense resulting more hardware and time related cost. Therefore, an optimum design of neural network is needed towards real-time detection of pathological patterns, if any from heart sound signal. The aims of this work are to (i) select a set of input features that are effective for identification of heart sound signals and (ii) make certain optimum selection of nodes in the hidden layer for a more effective ANN structure. Here, we present an optimization technique that involves Singular Value Decomposition (SVD) and QR factorization with column pivoting (QRcp) methodology to optimize empirically chosen over-parameterized ANN structure. Input nodes present in ANN structure is optimized by SVD followed by QRcp while only SVD is required to prune undesirable hidden nodes. The result is presented for classifying 12 common pathological cases and normal heart sound.Keywords: ANN, Classification of heart diseases, murmurs, optimization, Phonocardiogram, QRcp, SVD.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20719335 Qualitative Modelling for Ferromagnetic Hysteresis Cycle
Authors: M. Mordjaoui, B. Boudjema, M. Chabane, R. Daira
Abstract:
In determining the electromagnetic properties of magnetic materials, hysteresis modeling is of high importance. Many models are available to investigate those characteristics but they tend to be complex and difficult to implement. In this paper a new qualitative hysteresis model for ferromagnetic core is presented, based on the function approximation capabilities of adaptive neuro fuzzy inference system (ANFIS). The proposed ANFIS model combined the neural network adaptive capabilities and the fuzzy logic qualitative approach can restored the hysteresis curve with a little RMS error. The model accuracy is good and can be easily adapted to the requirements of the application by extending or reducing the network training set and thus the required amount of measurement data.Keywords: ANFIS modeling technique, magnetic hysteresis, Jiles-Atherton model, ferromagnetic core.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15879334 Optimization of Lakes Aeration Process
Authors: Mohamed Abdelwahed
Abstract:
The aeration process via injectors is used to combat the lack of oxygen in lakes due to eutrophication. A 3D numerical simulation of the resulting flow using a simplified model is presented. In order to generate the best dynamic in the fluid with respect to the aeration purpose, the optimization of the injectors location is considered. We propose to adapt to this problem the topological sensitivity analysis method which gives the variation of a criterion with respect to the creation of a small hole in the domain. The main idea is to derive the topological sensitivity analysis of the physical model with respect to the insertion of an injector in the fluid flow domain. We propose in this work a topological optimization algorithm based on the studied asymptotic expansion. Finally we present some numerical results, showing the efficiency of our approachKeywords: Quasi Stokes equations, Numerical simulation, topological optimization, sensitivity analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14689333 The Pitch Diameter of Pipe Taper Thread Measurement and Uncertainty Using Three-Wire Probe
Authors: J. Kloypayan, W. Pimpakan
Abstract:
The pipe taper thread measurement and uncertainty normally used the four-wire probe according to the JIS B 0262. Besides, according to the EA-10/10 standard, the pipe thread could be measured using the three-wire probe. This research proposed to use the three-wire probe measuring the pitch diameter of the pipe taper thread. The measuring accessory component was designed and made, then, assembled to one side of the ULM 828 CiM machine. Therefore, this machine could be used to measure and calibrate both the pipe thread and the pipe taper thread. The equations and the expanded uncertainty for pitch diameter measurement were formulated. After the experiment, the results showed that the pipe taper thread had the pitch diameter equal to 19.165mm and the expanded uncertainty equal to 1.88µm. Then, the experiment results were compared to the results from the National Institute of Metrology Thailand. The equivalence ratio from the comparison showed that both results were related. Thus, the proposed method of using the three-wire probe measured the pitch diameter of the pipe taper thread was acceptable.
Keywords: Pipe taper thread, Three-wire probe, Measure and Calibration, The Universal length measuring machine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 71059332 Governance and Economic Growth: Evidence of Ten Asian Countries
Authors: Chiung-Ju Huang
Abstract:
This study utilizes a frequency domain approach over the period of 1996 to 2013 to examine the causal relationship between governance and economic growth in ten Asian countries, which have different levels of democracy; classified as “Free”, “Partly Free”, and “Not Free” countries. The empirical results show that there is no Granger causality running from governance to economic growth in “Not Free” countries and “Partly Free” countries with the exception of Singapore. As for “Free” countries such as South Korea and Taiwan, there is a one-way causality running from governance to economic growth. The findings of this study indicate that policy makers in South Korea, Taiwan, and Singapore could use governance index to improve their predictions of the future economic growth.Keywords: Economic growth, frequency domain, governance, Granger causality.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23309331 Strip Decomposition Parallelization of Fast Direct Poisson Solver on a 3D Cartesian Staggered Grid
Authors: Minh Vuong Pham, Frédéric Plourde, Son Doan Kim
Abstract:
A strip domain decomposition parallel algorithm for fast direct Poisson solver is presented on a 3D Cartesian staggered grid. The parallel algorithm follows the principles of sequential algorithm for fast direct Poisson solver. Both Dirichlet and Neumann boundary conditions are addressed. Several test cases are likewise addressed in order to shed light on accuracy and efficiency in the strip domain parallelization algorithm. Actually the current implementation shows a very high efficiency when dealing with a large grid mesh up to 3.6 * 109 under massive parallel approach, which explicitly demonstrates that the proposed algorithm is ready for massive parallel computing.
Keywords: Strip-decomposition, parallelization, fast directpoisson solver.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20449330 Modeling User Behaviour by Planning
Authors: Alfredo Milani, Silvia Suriani
Abstract:
A model of user behaviour based automated planning is introduced in this work. The behaviour of users of web interactive systems can be described in term of a planning domain encapsulating the timed actions patterns representing the intended user profile. The user behaviour recognition is then posed as a planning problem where the goal is to parse a given sequence of user logs of the observed activities while reaching a final state. A general technique for transforming a timed finite state automata description of the behaviour into a numerical parameter planning model is introduced. Experimental results show that the performance of a planning based behaviour model is effective and scalable for real world applications. A major advantage of the planning based approach is to represent in a single automated reasoning framework problems of plan recognitions, plan synthesis and plan optimisation.Keywords: User behaviour, Timed Transition Automata, Automated Planning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13479329 Systholic Boolean Orthonormalizer Network in Wavelet Domain for Microarray Denoising
Authors: Mario Mastriani
Abstract:
We describe a novel method for removing noise (in wavelet domain) of unknown variance from microarrays. The method is based on the following procedure: We apply 1) Bidimentional Discrete Wavelet Transform (DWT-2D) to the Noisy Microarray, 2) scaling and rounding to the coefficients of the highest subbands (to obtain integer and positive coefficients), 3) bit-slicing to the new highest subbands (to obtain bit-planes), 4) then we apply the Systholic Boolean Orthonormalizer Network (SBON) to the input bit-plane set and we obtain two orthonormal otput bit-plane sets (in a Boolean sense), we project a set on the other one, by means of an AND operation, and then, 5) we apply re-assembling, and, 6) rescaling. Finally, 7) we apply Inverse DWT-2D and reconstruct a microarray from the modified wavelet coefficients. Denoising results compare favorably to the most of methods in use at the moment.
Keywords: Bit-Plane, Boolean Orthonormalization Process, Denoising, Microarrays, Wavelets
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1490