Qualitative Modelling for Ferromagnetic Hysteresis Cycle
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33123
Qualitative Modelling for Ferromagnetic Hysteresis Cycle

Authors: M. Mordjaoui, B. Boudjema, M. Chabane, R. Daira

Abstract:

In determining the electromagnetic properties of magnetic materials, hysteresis modeling is of high importance. Many models are available to investigate those characteristics but they tend to be complex and difficult to implement. In this paper a new qualitative hysteresis model for ferromagnetic core is presented, based on the function approximation capabilities of adaptive neuro fuzzy inference system (ANFIS). The proposed ANFIS model combined the neural network adaptive capabilities and the fuzzy logic qualitative approach can restored the hysteresis curve with a little RMS error. The model accuracy is good and can be easily adapted to the requirements of the application by extending or reducing the network training set and thus the required amount of measurement data.

Keywords: ANFIS modeling technique, magnetic hysteresis, Jiles-Atherton model, ferromagnetic core.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1062502

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1593

References:


[1] F. Preisach, "Über die magnetische nachwirkung" (in German), Zeitschrift für physik, vol. 94, no. 5-6, p. 277, 1935.
[2] D. C. Jiles and D. L. Atherton, "Theory of ferromagnetic hysteresis," J.Magn. Magn. Mater., vol. 61, pp. 48-60, 1986.
[3] K. P. R. Wilson, J. N. Ross, and A. D. Brown, "Optimizing the Jiles- Atherton model of hysteresis by a genetic algorithm," IEEE Trans. Magn., vol. 37, pp. 989-993, 2001.
[4] A. Salvini and F. Riganti Fulginei, "Genetic algorithms and neural networks loops," IEEE Trans. Magn., vol. 38, pp. 873-876, 2002.
[5] A. Salvini and C. Coltelli, "Prediction of dynamic hysteresis under highly distorted exciting fields by neural networks and actual frequency transplantation," IEEE Trans. Magn., vol. 37, pp. 3315-3319, 2001.
[6] P. Del Vecchio and A. Salvini, "Neural networks and Fourier descriptor macromodeling dynamic hysteresis," IEEE Trans. Magn., vol. 36, pp. 1246-1249, 2000.
[7] Q. Xu, A. Refsum " Neural network for represention of hysteresis loops," IEE proc-Sci Meas technol, Vol 144, No. 6, pp 263-266, 1997.
[8] H. H. Saliah and D. D. Lowther " A Neural Network Nodel of Magnetic Hysteresis for computational magnetics" , IEEE Trans. Magn., vol 33, N┬░ 05, pp 4146-4148, 1997.
[9] Dimitre Makaveev, Luc Dupre' , Marc De Wulf, and Jan Melkebeek, "modeling of quasistatic hysteresis with feed-forwad neural networks ", journal of applied physics, volume 99, N┬░ 11, pp 6737-6739, 2001.
[10] Dimitre Makaveev, Luc Dupre' , Marc De Wulf, and Jan Melkebeek, "Combined Preisach-Mayergoyz-neural-network vector hysteresis model for electrical steel sheets", journal of applied physics, volume 93, N┬░ 10, pp 6738-6740, 2003.
[11] M. Saghafifar, A. Nafalski, "Magnetic hysteresis modeling using dynamic neural networks", Japan Society of Applied Electromagnetics and Mechanics (JSAEM) Studies in Applied Electromagnetics and Mechanics, vol. 14, JSAEM, Kanazawa, Japan, pp.293-299, 2002.
[12] M. Kuczmann, A. Iványi, "A New Neural-Network-Based Scalar Hysteresis Model", IEEE Trans. on Magn., vol.38, no.2, pp. 857-860. 2002.
[13] M. Kuczmann, A. Iványi, "Neural Network Model of Magnetic Hysteresis", Compel, vol.21, no.3, pp. 364-376, 2002.
[14] Zadeh LA. Fuzzy sets. Information and Control, 8: 338-353, 1965.
[15] Buckley JJ, Hayashi Y. Hybrid fuzzy neural nets are universal approximators. Proc IEEE Int Conf on Fuzzy Systems 1994 Orlando, FL, 238-243, 1994.
[16] Kosko B. Fuzzy systems as universal approximators. Proc IEEE Int Conf on Fuzzy Systems, San Diego, CA, 1153-1162, 1992.
[17] J. Yen and R. Langari, Fuzzy Logic. Intelligence, Control and Information. Prentice Hall, 1999.
[18] J. S. Jang, C.-T. Sun and E. Mizutani, Neuro-Fuzzy and Soft Computing. Prentice Hall, 1997.
[19] A. Abraham. "Neuro-Fuzzy Systems: State-of-the-art Modeling Techniques". In J. Mira and A. Prieto (Eds), Connectionist Models of Neurons, Learning Processes, and Artificial Intelligence, Springer- Verlag, pp. 269-276, 2001.
[20] The MathWorks, Inc., Fuzzy Logic Toolbox. The MathWorks, Inc., 1998.
[21] J. S. Jang, "ANFIS: Adaptive-network-based fuzzy Inference Systems", IEEE Transactions on Systems, Man and Cybernetics. Part B: Cybernetics, vol. 23, pp. 665-685, 1993.
[22] Jang J-SR. "Self-learning fuzzy controllers based on temporal backpropagation". IEEE Trans Neural Netw 3(5):714-23, 1992.
[23] J.S.Roger Jang, C.T. Sun, Neuro-Fuzzy Modeling And Control, Proceeding of the IEEE, vol.83, No.3, 1995.
[24] Emilio Del Moral Hernandez, Carlos S. Muranaka, José R. Cardoso, "Identification of the Jiles-Atherton model parameters using random and deterministic searches", Physica B 275, pp 212-215, 2000.