Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32009
Warning about the Risk of Blood Flow Stagnation after Transcatheter Aortic Valve Implantation

Authors: Aymen Laadhari, Gábor Székely


In this work, the hemodynamics in the sinuses of Valsalva after Transcatheter Aortic Valve Implantation is numerically examined. We focus on the physical results in the two-dimensional case. We use a finite element methodology based on a Lagrange multiplier technique that enables to couple the dynamics of blood flow and the leaflets’ movement. A massively parallel implementation of a monolithic and fully implicit solver allows more accuracy and significant computational savings. The elastic properties of the aortic valve are disregarded, and the numerical computations are performed under physiologically correct pressure loads. Computational results depict that blood flow may be subject to stagnation in the lower domain of the sinuses of Valsalva after Transcatheter Aortic Valve Implantation.

Keywords: Hemodynamics, Transcatheter Aortic Valve Implantation, blood flow stagnation, numerical simulations.

Digital Object Identifier (DOI):

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 901


[1] P. R. Amestoy and I. S. Duff and J. Koster and J.-Y. L’Excellent, A Fully Asynchronous Multifrontal Solver Using Distributed Dynamic Scheduling, SIAM J. Matrix Anal. Appl., 2001, 23(1):15-41.
[2] M. Astorino, J. Hamers, S. C. Shadden and J.-F. Gerbeau, A robust and efficient valve model based on resistive immersed surfaces, Int. J. Numer. Methods Biomed. Engrg. 28(9):937–959 (2012).
[3] D. S. Bach, Prevalence and Characteristics of Unoperated Patients with Severe Aortic Stenosis, J. Heart Valve Dis. 2011;20:284-291.
[4] S. Chandra, N. M. Rajamannan and P. Sucosky, Computational assessment of bicuspid aortic valve wall-shear stress: implications for calcific aortic valve disease, J. Biomechanics and Modeling in Mechanobiology 2012, 11(7):1085-1096.
[5] E. De Marchena, J. Mesa, S. Pomenti, C. M. Kall, X. Marincic, K. Yahagi, E. Ladich, R. Kutys, Y. Aga, M. Ragosta, A. Chawla, M. E. Ring and R. Virmani, Thrombus Formation Following Transcatheter Aortic Valve Replacement, JACC: Cardiovascular Interventions 2015, 8(5):728-739
[6] R. V. Freeman and C. M. Otto, Spectrum of calcific aortic valve disease. Pathogenesis, disease progression and treatment strategies, Circulation. 2015, 111:3316-3326.
[7] C. Geuzaine and J.-F. Remacle, Gmsh: A 3-D finite element mesh generator with built-in pre- and post-processing facilities, Int. J. Numer. Meth. Engng., 2009, 79: 1309-1331.
[8] T. Korakianitis and Y. Shi, A concentrated parameter model for the human cardiovascular system including heart valve dynamics and atrioventricular interaction, Med. Eng. Phys. 2006, 28(7):613-628.
[9] A. Laadhari and G. Sz´ekely, Eulerian finite element method for the numerical modeling of fluid dynamics of natural and pathological aortic valves, J. Comput. Appl. Math. (submitted 2016).
[10] A. Laadhari, A. Quarteroni, Numerical modeling of heart valves using resistive Eulerian surfaces, Int. J. Numer. Method. Biomed. Eng. 32(5) (2016).
[11] A. Laadhari, P. Saramito, C. Misbah, An adaptive finite element method for the modeling of the equilibrium of red blood cells, Int. J. Numer. Meth. Fluids 80 (2016) 397–428.
[12] A. Laadhari, P. Saramito and C. Misbah, Computing the dynamics of biomembranes by combining conservative level set and adaptive finite element methods, J. Comput. Phys. 263 (2014) 328–352.
[13] J. K-J. Li, Laminar and turbulent flow in the mammalian aorta: Reynolds number, Journal of Theoretical Biology (1988), 135(3):409–414.
[14] M. Lindroos, M. Kupari, J. Heikkil¨a, R. Tilvis, Prevalence of aortic valve abnormalities in the elderly: an echocardiographic study of a random population sample, J. Am. Coll. Cardiol. 1993;21(5):1220-1225.
[15] S. N. Miandoab and R. E. Michler, A Review of Most Relevant Complications of Transcatheter Aortic Valve Implantation, ISRN Cardiology 2013;12:2013.
[16] M.P.I. Forum, MPI: A Message-Passing Interface Standard, http://www. (Accessed: 28.11.2016).
[17] MUMPS: MUltifrontal Massively Parallel Solver, http://mumps. (Accessed: 28.11.2016).
[18] J. D. Newton, S. Redwood and B. D. Prendergast, Transcatheter aortic valve implantation: a durable treatment option in aortic stenosis?, Heart 2015, 101(12):913-914.
[19] C. M. Otto, J. Knuusisto, D. D. Reichenbach, A. M. Gown and K. D. O’Brien, Characterization of the early lesion of ”degenerative” valvular aortic stenosis. Histological and immunohistochemical studies, Circulation. 1994;90(2):844-853.
[20] Paraview: Parallel visualization application, (Accessed: 28.11.2016).
[21] P. Saramito, Efficient C++ finite element computing with Rheolef, CNRS-CCSD ed., 2013. Saramito/rheolef/rheolef-refman.pdf (Accessed: 22.09.16).
[22] K. S. Sakariassen, S. R. Hanson and Y. Cadroy, Methods and models to evaluate shear-dependent and surface reactivity-dependent antithrombotic efficacy, Thromb Res. 2001; 104: 149-174.
[23] J. M. Sinning, M. Vasa-Nicotera, D. Chin, C. Hammerstingl, A. Ghanem, J. Bence, J. Kovac, E. Grube, G. Nickenig and N. Werner Evaluation and management of paravalvular aortic regurgitation after transcatheter aortic valve replacement, J. Am. Coll. Cardiol. 2013,62:11-20.
[24] B. A. Towfiq, J. Weir and J.M. Rawles, Effect of age and blood pressure on aortic size and stroke distance, British Heart J. 1986, 55(6):560-568.
[25] N. Westerhof, G. Elzinga and P. Sipkema, An artificial arterial system for pumping hearts, J. Appl. Physiol. 1971, 31(5), 776-781.
[26] H. J. Weiss, V. T. Turitto and H. R. Baumgartner, Role of shear rate and platelets in promoting fibrin formation on rabbit subendothelium - studies utilizing patients with quantitative and qualitative platelet defects, J. Clin. Invest. 1986; 78: 1072-1082.
[27] T. Williams and C. Kelley, Gnuplot: An Interactive Plotting Program (Accessed: 28.11.2016).
[28] Y. R. Woo and A. P. Yogananthan, In vitro pulsatile flow velocity and shear stress measurements in the vicinity of mechanical mitral heart prostheses, J. Biomech. 1986;19:39-51.