
 

 

  
Abstract—We describe a novel method for removing noise (in 

wavelet domain) of unknown variance from microarrays. The method 
is based on the following procedure: We apply 1) Bidimentional 
Discrete Wavelet Transform (DWT-2D) to the Noisy Microarray, 2) 
scaling and rounding to the coefficients of the highest subbands (to 
obtain integer and positive coefficients), 3) bit-slicing to the new 
highest subbands (to obtain bit-planes), 4) then we apply the 
Systholic Boolean Orthonormalizer Network (SBON) to the input 
bit-plane set and we obtain two orthonormal otput bit-plane sets (in a 
Boolean sense), we project a set on the other one, by means of an 
AND operation, and then, 5) we apply re-assembling, and, 6) re-
scaling. Finally, 7) we apply Inverse DWT-2D and  reconstruct a 
microarray from the modified wavelet coefficients. Denoising results 
compare favorably to the most of methods in use at the moment. 
 

Keywords—Bit-Plane, Boolean Orthonormalization Process, 
Denoising, Microarrays, Wavelets 

I. INTRODUCTION 
microarray is affected by noise in its acquisition and 
processing. Microarray denoising is used to remove the 

additive noise while retaining as much as possible the 
important image features. In the recent years there has been an 
important amount of research on wavelet thresholding and 
threshold selection for bioimages denoising, e.g., microarray 
images [1], [2], because wavelet provides an appropriate basis 
for separating noisy signal from the image signal. The 
motivation is that as the wavelet transform is good at energy 
compaction, the small coefficients are more likely due to noise 
and large coefficient due to important signal features [3]-[5]. 
These small coefficients can be thresholded without affecting 
the significant features of the image. 

In general, the results of the microarray processing combine 
two sample images that after further image processing, gene 
expression data can be produced for further analysis, such as 
gene clustering or identification [1], [2]. These three crucial 
steps, experiment, image processing and data analysis, 
determine the success or not of the microarray analysis. Image 
processing plays a potentially large impact on the subsequent 
analysis. In recent years, a large number of commercial tools 
have been developed in microarray image processing [1], [2]. 
The tasks of all these tools mainly focus on two major targets, 
namely: spot segmentation and spot intensity extraction. 
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However, the quality of the images from the experiments is 
not always perfect. The gene array experiments involve a 
large number of error-prone steps which lead to a high level of 
noise in the resulting images [1], [2]. Hence, the accuracy of 
the gene expressions derived from these images will largely be 
affected in the process.  

In order to assure the accuracy of the gene expression, 
normally the replicated experiments and incorporated 
statistical methods are needed to estimate the errors [1], [2]. 
These methods deal mainly with measurement error, such as 
preparation of the sample, cross hybridization, and fluctuation 
of fluorescence value from gene to gene. But none deals 
particularly with the effect of the noise [1], [2]. 

In fact, the thresholding technique is the last approach 
based on wavelet theory to provide an enhanced approach for 
eliminating such noise source and ensure better gene 
expression. Thresholding is a simple non-linear technique, 
which operates on one wavelet coefficient at a time. In its 
basic form, each coefficient is thresholded by comparing 
against threshold, if the coefficient is smaller than threshold, 
set to zero; otherwise it is kept or modified. Replacing the 
small noisy coefficients by zero and inverse wavelet transform 
on the result may lead to reconstruction with the essential 
signal characteristics and with less noise. Since the work of 
Donoho & Johnstone [5], there has been much research on 
finding thresholds, however few are specifically designed for 
images [3], [4], [6].  

Unfortunately, this technique has the following disadvan-
tages: 
1) it depends on the correct election of the type of             

thre-sholding, e.g., OracleShrink, VisuShrink (soft-
thresholding, hard-thresholding, and semi-soft-threshold-
ing), Sure-Shrink, Bayesian soft thresholding, Bayesian 
MMSE estimation, Thresholding Neural Network (TNN), 
due to Zhang, NormalShrink, , etc. [3]-[7],  

2) it depends on the correct estimation of the threshold which 
is arguably the most important design parameter,  

3) it doesn't have a fine adjustment of the threshold after their 
calculation, 

4) it should be applied at each level of decomposition, 
needing several levels, and 

5) the specific distributions of the signal and noise may not be 
well matched at different scales. 

Therefore, a new method without these constraints will 
represent an upgrade. 
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The Bidimensional Discrete Wavelet Transform and the 
method to reduce noise by wavelet thresholding is outlined in 
Section II. The SBON as an Boolean orthonormalizer and as a 
denoiser tool in wavelet domain is outlined in Section III. In 
Section IV, we discuss briefly the noise sources and its 
statistical measurement in microarray imaging. In Section V, 
the experimental results using the proposed algorithm are 
presented. Finally, Section VI provides a conclusion of the 
paper.  

II. BIDIMENSIONAL DISCRETE WAVELET TRANSFORM 
The Bidimensional Discrete Wavelet Transform (DWT-2D) 

[8]-[17] corresponds to multiresolution approximation 
expressions. In practice, mutiresolution analysis is carried out 
using 4 channel filter banks composed of a low-pass and a 
high-pass filter and each filter bank is then sampled at a half 
rate (1/2 down sampling) of the previous frequency. By 
repeating this procedure, it is possible to obtain wavelet 
transform of any order. The down sampling procedure keeps 
the scaling parameter constant (equal to ½) throughout 
successive wavelet transforms so that is benefits for simple 
computer implementation. In the case of an image, the 
filtering is implemented in a separable way be filtering the 
lines and columns. 

Note that [8] the DWT of an image consists of four 
frequency channels for each level of decomposition. For 
example, for i-level of decomposition we have:  
LL n,i: Noisy Coefficients of Approximation.  
LH n,i: Noisy Coefficients of Vertical Detail, 
HL n,i: Noisy Coefficients of Horizontal Detail, and  
HH n,i: Noisy Coefficients of Diagonal Detail.  
 

The LL part at each scale is decomposed recursively, as 
illustrated in Fig. 1. 

 

 
Fig. 1 Data preparation of the image. Recursive decomposition  

of LL parts 
 

To achieve space-scale adaptive noise reduction, we need to 
prepare the 1-D coefficient data stream which contains the 
space-scale information of 2-D images. This is somewhat 
similar to the “zigzag” arrangement of the DCT (Discrete 
Cosine Transform) coefficients in image coding applications 
[18]. In this data preparation step, the DWT-2D coefficients 

are rearranged as a 1-D coefficient series in spatial order so 
that the adjacent samples represent the same local areas in the 
original image. An example of the rearrangement of an 8-by-8 
transformed image is shown in Fig. 2, which will be referred 
to as a 1D space-scale data stream. 
 

Each number in Fig. 2 represents the spatial order of the 
2D coefficient at that position corresponding to Fig. 1. 

 

 
Fig. 2 Data preparation of the image. Spatial order  

of 2-D coefficients 

A. Wavelet Noise Thresholding 
The wavelet coefficients calculated by a wavelet transform 

represent change in the image at a particular resolution. By 
looking at the image in various resolutions it should be 
possible to filter out noise. At least in theory. However, the 
definition of noise is a difficult one. In fact, "one person's 
noise is another's signal". In part this depends on the 
resolution one is looking at. One algorithm to remove 
Gaussian white noise is summarized by D.L. Donoho and I.M. 
Johnstone [5], and synthesized in Fig. 3. 

  

 
Fig. 3 Thresholding Techniques 

 
The algorithm is:  

1) Calculate a wavelet transform and order the 
coefficients by increasing frequency. This will result 
in an array containing the image average plus a set of 
coefficients of length 1, 2, 4, 8, etc. The noise 
threshold will be calculated on the highest frequency 
coefficient spectrum (this is the largest spectrum). 
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2) Calculate the median absolute deviation on the largest 
coefficient spectrum. The median is calculated from the 
absolute value of the coefficients. The equation for the 
median absolute deviation is shown below: 

0.6745

Cmedian in
mad

)(| |,=δ                                                   (1) 

where Cn,i may be LHn,i , HLn,i , or HHn,i  for i-level of 
decomposition. The factor 0.6745 in the denominator res-
cales the numerator so that madδ  is also a suitable esti-
mator for the standard deviation for Gaussian white noise 
[5]. 
 

3) For calculating the noise threshold λ we have used a 
modified version of the equation that has been discussed 
in papers by D.L. Donoho and I.M. Johnstone. The 
equation is: 

][N2logmadδλ =                                                      (2) 

where N is the number of pixels in the subimage, i.e., HL, 
LH or HH. 

4) Apply a thresholding algorithm to the coefficients. There 
are two popular versions: 
4.1. Hard thresholding. Hard thresholding sets any coeffi-
cient less than or equal to the threshold to zero, see Fig. 4 
(a). 

 

 
 

Fig. 4 (a) Soft-Thresholfing 
 

where x may be LHn,i , HLn,i , or HHn,i , y may be HHd,i : 
Denoised Coefficients of Diagonal Detail,  
HL d,i : Denoised Coefficients of Horizontal Detail,  
LH d,i : Denoised Coefficients of Vertical Detail,  
for i-level of decomposition. 

 
The respective code is: 
 
for row = 1:N1/2  
  for column = 1:N1/2  
    if |Cn,i[row][column]| <= λ,   
      Cn,i[row][column] = 0.0; 
    end 
  end 
end 

4.2. Soft thresholding. Soft thresholding sets any 
coefficient less than or equal to the threshold to          
zero, see Fig. 4(b). The threshold is subtracted from 
any coefficient that is greater than the threshold. This 
moves the image coefficients toward zero. 

 

 
 

Fig. 4 (b) Hard-Thresholfing 
 

The respective code is: 
for row = 1:N1/2  
  for column = 1:N1/2  
    if |Cn,i[row][column]| <= λ,  
      Cn,i[row][column] = 0.0;  
    else  
      Cn,i[row][column] = Cn,i[row][column] - λ; 
    end 
  end 
end 

III. SYNTHETIC BOOLEAN ORTHONORMALIZER NETWORK 
The SBON was introduced by Mastriani [19] as a Boolean 

Orthonormalization Process (BOP) to convert a non-
orthonormal Boolean basis, i.e., a set of non-orthonormal 
binary vectors (in a Boolean sense) to an orthonormal Boolean 
basis, i.e., a set of orthonormal binary vectors (in a Boolean 
sense). The BOP algorithm has a lot of fields of applications, 
e.g.: Steganography, Hopfield Networks, Boolean Correlation 
Matrix Memories, Bi-level image processing, lossy 
compression, iris, fingerprint and face recognition, improving 
edge detection and image segmentation, among others. That is 
to say, all those applications that need orthonormality in a 
Boolean sense. It is important to mention that the BOP is an 
extremely stable and fast algorithm. 

A. Orthonormality in a Boolean Sense 
Given a set of binary vectors uk = [ uk1 , uk2 , … , ukp ]T 

(where k = 1, 2, … , q, and [.]T means transpose of [.]), they 
are orthonormals in a Boolean sense, if they satisfy the 
following pair of conditions: 
 
uk

 ∧  uj  = uk = uj if  k = j                                                  (3.1) 
 
and 
 
uk

 ∧  uj  = 0 if  k ≠ j                                                          (3.2) 
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where 0 = [ 0 , 0 , … , 0 ]T , and the term uk
 ∧  uj  represents the 

AND operation between each element of the binary vectors uk 
and uj  , i.e.,  
 
uk

 ∧  uj  = [uk1 ∧  uj1 , uk2 ∧  uj2 , ••• , ukp ∧  ujp ]T                     (4) 
 

B. Boolean Orthonormalization Process (BOP) 
Given a set of key binary vectors that are nonorthonormal 

(in a Boolean sense), we may use a preprocessor to transform 
them into an orthonormal set (in a Boolean sense); the prepro-
cessor is designed to perform a Boolean orthonormalization 
on the key binary vectors prior to association. This form of 
transformation is described below, maintaining a one-to-one 
correspondence between the input (key) binary vectors v1 , v 2 , 
… , v N , the resulting orthonormal binary vectors u1 , u2 , … , uN , 
and the residual binary vectors  s1 , s2 , … , sN . 
 
1) Version 1: As it is shown in the Fig. 5 

si =  vi ∨ ui    ∀  i , with s1 =  0                                               (5) 
 
ui ∧  si  =  0  ∀  i                                                                    (6) 
 

where ∨ represents the XOR operation. Eq.(6) represents the 
orthogonality principle in a Boolean sense [19]. 
 
ui ∧  uk =  0  ∀  i ≠  k                                                           (7) 
 
si,j ≤  vi,j     ∀  i , j                                                                     (8) 
 
Algorithm: 
 
uj =  vj    ∀  j 

uj =  uj   ∨ (vj ∧  ui),   i ∈  [1, j-1],  j ∈  [1, N] 
 
2) Version 2: As it is shown in the Fig. 6 

ui = vi ∨ si    ∀  i , with u1 =  v1 , because s1 =  0                    (9) 
 
Algorithm: 
 
sj =  0   ∀  j 

sj =  sj  ∨  (vj ∧  (vi ∨ si) ),   i ∈  [1, j-1],  j ∈  [1, N] 
 

C. SBON in wavelet domain for microarray denoising 
The new method of microarray denoising can be 

represented by the Fig. 7, according to the following 
algorithm: 
 
We apply 
1) DWT-2D to the Noisy Microarray,  
 
2) scaling and rounding to the coefficients of the highest 
subbands (for to obtain integer and positive coefficients),  

 
3) bit-slicing to the new highest subbands (for to obtain bit-
planes), see Fig. 8 
4) SBON to the input bit-plane set and we obtain two 
orthonormal otput bit-plane sets (in a Boolean sense), we 
project a set on the other one, by means of an AND operation, 
and then, see Fig. 9 
 
5) re-assembling, and, see Fig. 8 
 
6) re-scaling, and 
 
7) Inverse DWT-2D and reconstruct a microarray from the 
modified wavelet coefficients. 

IV. NOISE SOURCES AND ITS STATISTICAL MEASUREMENT IN 
MICROARRAY IMAGING 

It is well known microarray technology can monitor 
thousand of DNA sequences in a high density array on a glass. 
The basic procedure for a microarray experiment is simply 
described as follow. Two mRNA samples are reverse-
transcribed into cDNA, labeled using different fluorescent 
dyes (e.g., the red fluorescent dye Cy5 and the green fluores-
cent dye Cy3), then mixed and hybridized with the arrayed 
DNA sequences. After this competitive hybridization, the 
slides are imaged using a scanner which makes fluorescence 
measurement for each dye. From the differential hybridization 
of the two samples, the relative abundance of the spotted DNA 
sequences can be assessed. A schematic diagram for this 
process created is shown in [2]. 

 
The results of the microarray experiment are two 16-bit 

tagged mage files, one for each fluorescent dye. The Fig. 
10(a) show an example of the mentioned microarray image. 
As shown in Fig. 10(b), the image is not perfect and it 
includes noisy sources that blur such image for further gene 
expression experimentation. The noise source originates from 
different sources during the course of experiment, such as 
photon noise, electronic noise, laser light reflection, dust on 
the slide, and so on. Hence, it is crucial to denoise the 
resultant image within this process. 

 
Exciting methods to reduce the noise source include using 

clean glass slide and using a higher laser power rather than 
higher PMT voltages. However, there are not adequate for the 
required image qualities and an enhanced software procedure 
embedded within the process in a much better alter-native. In 
this paper, we focus on the implementation of the SBON 
method (in wavelet domain) to the denoising on microarray 
images [2]. Yet there are some fundamental obstacles that 
need clarification before the full potential of microarrays can 
be explored. One of the major problems in interpre-tation of 
microarray data is that different clustering techniques produce 
different results.  

On the other hand, the assessment parameters that are used 
to evaluate the performance of noise reduction [20], [21] are 
the following ones: 
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Fig. 5 SBON, version 1 
 

 
 

Fig. 6 SBON, version 2 
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Fig. 7 Microarray denoising 
 

 
Average Absolute Difference (AAD):   
 

AAD =  
C*R

crIcrI
cr

d∑ −
,

),(),(

                                (10) 

 
Signal to Noise Ratio (SNR): 
 

SNR = 
∑

∑
−

cr
d

cr

crIcrI

crI

,

2
,

2

)),(),((

),(

                                (11) 

Peak Signal to Noise Ratio (PSNR):   
    

PSNR =  
∑ −

cr
d

cr

crIcrI

crImaxCR

,

2

2

,

)),(),((

)),((**

                           (12) 

 
Image Fidelity (IFy): 
 

IFy =  1 - 
SNR

1
                                                 (13) 
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Fig. 8 Lena’s bit-slicing and re-assembling. 

 
 

Fig. 9 SBON application on Lena’s bit-plane set 
 

 
Correlation Quality (CQy):    
 

   CQy =  
∑

∑

cr

cr
d

crI

crIcrI

,

,

),(

),(*),(

                                       (14) 

 
Structural Content (SCt): 
 

SCt =  
∑
∑

cr
d

cr

crI

crI

,

2
,

2

),(

),(

                                                (15) 

 
Where for an image of R*C (rows-by-columns) pixels, r 

means row, c means column, I means original image (without 
noise), and Id means denoised image. Such as, a lower AAD 
gives a “cleaner” image as more noise is reduced; larger SNR 
and PSNR indicates a smaller difference between the original 
(without noise) and denoised image; if IFy and SCt spread at 
1, we will obtain an image Id of better quality; and a larger 
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value of CQy usually corresponds to a better quantitative 
performance [20], [21]. 

 
On the other hand, to compare edge preservation 

performances of different noise reduction schemes, we adopt 
the Pratt’s figure of merit (FOM) [21] defined by 

 

FOM = ∑
= +

N

i iideal d1

1

NNmax

1 ˆ

1
2},ˆ{ α

                                  (16) 

 
where N̂  and Nideal are the number of detected and ideal edge 
pixels, respectively, di is the Euclidean distance between the 
ith detected edge pixel and the nearest ideal edge pixel, and α 
is a constant typically set to 1/9. FOM ranges between 0 and 
1, with unity for ideal edge detection. 

V. RESULTS 
The simulations demonstrate that the SBON technique 

improves the noise reduction performance to the maximum, 
for bioimages. Here, we present a set of experimental results 
using two bioimages. Such images were converted to bitmap 
file format for their treatment [22].  

 
For statistical filters employed, i.e., Median, Lee, Kuan, 

Gamma-Map, Enhanced Lee, Frost, Enhanced Frost, Wiener, 
DS, and EDS, we use a reduction scheme [22]. Figure 10 
shows the noisy (30 %) and filtered microarray images used in 
the first experiment of [1], with a 274-by-274 (pixels) by 
65536 (gray levels) bitmap matrix. Table 1 summarizes the 
assessment parameters vs. 19 filters for Fig. 10, where En-Lee 
means Enhanced Lee Filter, En-Frost means Enhanced Frost 
Filter, ST means Soft-Thresholding, HT means Hard-
Thresholding and SST means Semi-Soft-Thresholding.  

 
The assessment parameters were applied to the whole 

image.  
 
Figure 11 shows the noisy (10 %) and filtered microarray 

images used in the second experiment of [1], with a 256-by-
256 (pixels) by 65536 (gray levels) bitmap matrix. Table 2 
summa-rizes the assessment parameters vs. 19 filters for 
Figure 11. In both cases, the bioimages were processed by 
using 10 statistical filters, VisuShrink with Daubechies 4 
wavelet basis and 1 level of decomposition (improvements 
were not noticed with other basis of wavelets) [2], [3], [5], [6], 
[22], SureShrink, Oracle-Shrink, BayesShrink, NormalShrink, 
TNN [5]-[7], [22], and SBON respectively. Figures 10 and 11 
summarize the edge preservation performance of the SBON 
technique vs. the rest of the filters with a considerably 
acceptable computational complexity. A 3-by-3 kernel was 
employed for all statistic noise filters. For TNN [7] the 
empirical function parameter value λ = 0.01. 

 
For Lee, Enhanced Lee, Kuan, Gamma, Frost and 

Enhanced Frost filters the damping factor is set to 1, see [3], 

[22]. The quantitative results of Table 1 and 2 shows that the 
SBON technique can eliminate noise without distorting useful 
image information and without destroying the important 
image edges.  

 
Also, in the experiment, the SBON outperformed the 

conventional and no conventional noise reducing filters in 
terms of edge preservation measured by Pratt figure of merit 
[21]. In nearly every case in every homogeneous region, the 
SBON produced the lowest standard deviation and was able to 
preserve the mean value of the region.  

 
The numerical results are further supported by qualita-tive 

examination, as shown in Fig. 10 and 11. 
 
On the other hand, all filters was applied to complete 

image, for Figure 10 (274-by-274) pixels and Figure 11 (256-
by-256) pixels, and all the filters were implemented in 
MATLAB® (Mathworks, Natick, MA) on a PC with an 
Athlon (2.4 GHz) processor. 

VI. CONCLUSIONS 
In this paper we have developed a SBON technique based 

tools for removing additive noise in microarrays. The 
simulations show that the SBON have better performance than 
the most commonly used filters for microarrays (for the 
studied benchmark parameters) which include statistical 
filters, wavelets, and a version of TNN. The SBON exploits the 
local coefficient of variations in reducing noise. The 
performance figures obtained by means of computer 
simulations reveal that the SBON technique provides superior 
performance in comparison to the above mentioned filters in 
terms of smoothing uniform regions and preserving edges and 
features. The effectiveness of the technique encourages the 
possibility of using the approach in a number of ultrasound 
and radar applications. Besides, the method is computationally 
efficient and can significantly reduce the noise while 
preserving the resolution of the original microarray image. 
Considerably increased Pratt’s figure of merit strongly 
indicates improvement in detection performance. Also, 
cleaner images suggest potential improvements for 
classification and recognition. On the other hand, the 
drawback of applying the developed SBON technique for 
removing additive noise in microarrays is the increase in the 
computational complexity, for blame of the slicing process. 
 

Finally, the natural extension of this work is in Synthetic 
Aperture Radar (SAR) images, as well as in multimedial 
applications. 
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Fig. 10 Original, noisy and filtered images 
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Fig. 11 Original, noisy and filtered images 
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TABLE I 
ASSESSMENT PARAMETERS VS. FILTERS FOR FIGURE 10 

Assessment Parameter Filter AAD SNR PSNR IF CQ SC FOM 
En-Frost 38.2653 3.4464 33.7364 0.7109 150.7467 0.5663 0.39857 
En-Lee 39.7437 3.3363 33.8373 0.7112 150.7472 0.5632 0.49876 
Frost 38.4374 3.2423 33.7033 0.7106 150.5244 0.5689 0.48756 
Lee 39.2427 3.4242 32.6363 0.7015 150.4141 0.5924 0.43447 

Gamma 39.6252 3.1112 33.2703 0.7063 150.1918 0.5751 0.44235 
Kuan  39.8224 3.1243 31.8272 0.7041 149.3121 0.5715 0.45342 

Median 39.5252 3.1131 32.7916 0.6852 148.9172 0.5896 0.40704 
Wiener 39.1829 3.4557 33.7033 0.7106 150.5244 0.5689 0.44236 

DS 38.7332 3.4657 33.9997 0.7169 150.9898 0.5599 0.64111 
EDS 38.1484 3.6969 34.1315 0.7182 151.5252 0.5612 0.64324 

VisuShrink (ST) 39.1450 3.4596 33.7412 0.7109 151.1527 0.5657 0.44382 
VisuShrink (HT) 38.8612 3.5283 34.4115 0.7166 151.3316 0.5666 0.44324 
VisuShrink (SST) 38.1829 3.5557 34.7033 0.7196 151.9202 0.5612 0.46432 

SureShrink 38.1612 3.5751 34.7193 0.7198 151.9244 0.5611 0.43322 
OracleShrink 38.1189 3.6957 34.7233 0.7198 151.9844 0.5619 0.45534 
BayesShrink 38.1145 3.6968 34.7237 0.7199 151.9953 0.5612 0.46329 

NormalShrink 38.1098 3.6998 34.8734 0.7199 151.9983 0.5609 0.59333 
TNN 38.1008 3.7157 34.8833 0.7199 151.9992 0.5600 0.65432 

SBON 37.7155 3.7772 36.8388 0.7353 155.4613 0.5513 0.69123 
 
 

TABLE II 
ASSESSMENT PARAMETERS VS. FILTERS FOR FIGURE 11 

Assessment Parameter Filter AAD SNR PSNR IF CQ SC FOM 
En-Frost 12.4747 290.1324 363.6712 0.9830 226.4744 0.8972 0.41265 
En-Lee 12.8474 290.2522 363.9321 0.9883 226.8373 0.8932 0.51986 
Frost 12.1847 290.2772 363.0233 0.9828 226.3272 0.8923 0.55312 
Lee 12.3733 290.2333 363.0238 0.9838 226.2822 0.8943 0.44421 

Gamma 12.3830 290.8331 363.3433 0.9882 226.8383 0.8934 0.51235 
Kuan  12.3833 290.8272 363.4923 0.9887 226.8381 0.8934 0.54129 

Median 12.9973 289.1212 361.8374 0.9673 225.9287 0.8734 0.51286 
Wiener 11.9042 290.8635 363.5568 0.9866 226.8901 0.8954 0.56413 

DS 11.4572 290.9950 363.9393 0.9898 226.9723 0.8993 0.64213 
EDS 11.5792 290.9998 363.9865 0.9899 226.9975 0.8993 0.64449 

VisuShrink (ST) 11.9055 289.2367 361.5523 0.9761 222.7564 0.8872 0.51228 
VisuShrink (HT) 11.9042 290.8673 363.5615 0.9966 226.8909 0.8976 0.56424 
VisuShrink (SST) 11.7864 290.9546 363.9822 0.9975 226.8937 0.8984 0.56389 

SureShrink 11.7074 291.0753 363.8343 0.9991 226.8942 0.8991 0.57432 
OracleShrink 11.8436 290.9332 363.7363 0.9968 226.8963 0.8983 0.55234 
BayesShrink 11.9353 290.9363 363.7361 0.9923 226.8942 0.8962 0.56328 

NormalShrink 11.6875 290.9992 363.9353 0.9992 226.9021 0.8999 0.59611 
TNN 11.4447 291.7243 363.9991 0.9994 226.9732 0.9002 0.62900 

SBON 10.9071 294.9237 383.1090 0.9992 229.8972 0.9173 0.69322 
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