
 
Abstract—Prior literature in the field of adaptive and 

personalized learning sequence in e-learning have proposed and 
implemented various mechanisms to improve the learning process 
such as individualization and personalization, but complex to 
implement due to expensive algorithmic programming and need of 
extensive and prior data. The main objective of personalizing 
learning sequence is to maximize learning by dynamically selecting 
the closest teaching operation in order to achieve the learning 
competency of learner. In this paper, a revolutionary technique has 
been proposed and tested to perform individualization and 
personalization using modified reversed roulette wheel selection 
algorithm that runs at O(n). The technique is simpler to implement 
and is algorithmically less expensive compared to other revolutionary 
algorithms since it collects the dynamic real time performance matrix 
such as examinations, reviews, and study to form the RWSA single 
numerical fitness value. Results show that the implemented system is 
capable of recommending new learning sequences that lessens time 
of study based on student's prior knowledge and real performance 
matrix. 
 

Keywords—E-learning, fitness value, personalized learning 
sequence, reversed roulette wheel selection algorithms. 

I. INTRODUCTION 

HE proliferation and unprecedented increased of e-
learning system stimulated research output on 

personalized learning sequence and adaptive learning. This 
new educational pedagogy becomes a trend in educational 
system, suitable to the students’ needs, their individual 
preferences, and learning styles [1]. Personalizing learning 
sequence enables customization and personalizing topic 
sequence by autosuggestion of learning sequence and dynamic 
insertion of content in an appropriate format that is relevant or 
important to the individual learner, based on the learner’s 
behavior, prior details, and personal preferences [2]. 
Personalizing learning sequence is easy, practical and a 
flexible way to achieve learning goal at students’ own time 
and own paces. According to National Educational 
Technology Plan (N.E.T.P.) developed by the U.S. 
Department of Education, Personalized Learning Sequence or 
P.L.S. is defined as assessing the pace, assessing the approach, 
and combining the learners’ attributes such as interests, 
learning style, and personal experiences [3]. Moreover, 
personalized learning sequence is the process of conforming 
or contouring learning to the learners that emphasize and 
recognize learners’ different weaknesses and strengths, and 
diversified ways of learning [4]. 
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Although there are different ways in students’ interests and 
personal objectives in learning and take them in different 
directions in learning process; they want all to learn. 
Personalized Learning Sequence or P.L.S. is suitable and 
appropriate to describe this concept because it means, “finding 
the best and easy ways to learn”. Students should understand 
how to learn best and become active in designing their 
individual learning objectives [5]. Student should express 
what they know and how they prefer to engage in the learning 
process. When students’ take responsibility and manage their 
own learning process, they are more active, more motivated 
and more engaged in the learning process. Thus, personalized 
learning sequence is timely needed to support dispersed and 
heterogeneous students. 

II. RELATED LITERATURES 

Personalized topic or learning sequencing is used to 
generate an individualized course sequence or structure for 
each learner by selecting optimal pedagogical and teaching 
operation [6]. Optimal pedagogy means a process that is in the 
presence of other available teaching techniques or strategies; it 
will bring the students to their educational goals. The most 
common goal is to learn a required concepts till to a specific 
level in a minimal time and minimal learning errors. Due to 
diversity of students, there are no specific or fixed learning 
paths for all learners due to individual learning attributes. The 
success depends on the learning environment system 
capability to automatically adapt the learning material to the 
student’s educational needs to promote learning performance 
[7]. Experiments and case studies showed that the benefits and 
academic achievements in PLS system were higher compared 
to non-personalized learning system [8], [9]. 

Many and different approaches to PLS or topic sequencing 
has been explored in the area of e-learning and online learning 
implementations. Research shows that PLS is recommended 
by using student’s feedback, knowledge level, and the 
perceived materials difficulty [10] while, others have used 
learning styles and personal prior data [11], genetic algorithms 
[12] and item response theory mechanism or I.R.T. [13]. 
These researches are algorithmically expensive and complex 
due to various components such as learning style and data or 
numerical value extraction. Other literature manipulated the 
sequence of problems amongst learners simultaneously using 
predetermine measurement [14] while others were able to 
sequence several kinds of teaching mechanism such as 
presentations, examples and most importantly, the assessments 
[15], [16]. Personalized Learning Sequence or PLS is a 
popular and an excellent technology for online-based 
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on the student’s background performance in reading the 
learning materials. Questions are provided to cover the 
topic and each question has a certain level of difficulty. 
An answer on a harder question demonstrates higher 
ability than correctly answering an easier question. 
Equation (2) is used to compute the examination 
performance of a student. 

 

Exper(Li) = ∑ ∗ 100 																(2) 

 
2. Study performance- this performance is measured by 

interaction of students with the system. The interaction 
refers to viewing or listening to the course materials in 
multimedia form and measures, how much 
comprehension the student has gained through these 
learning activities. Usually, a topic is presented in 
multiple pages and each topic is assigned a weight, which 
corresponds to its importance. Equation (3) computes the 
study performance.  

 
SP(Li) = 5*NWi                               (3) 

 
3. Reviewed Topics Performance – This review topics 

performance is the score on a topic that shows records on 
how much the student review the topic by clicking arrow 
back and forth. It is based on how many times the topic is 
reviewed and how much of the materials are viewed each 
time. The review score is in the range from 0 to1 for each 
topic. Each time a student reviews the topic, a 
discriminating value of 0.1 is deducted to ideal_ 
review_score that initially set to 1. The students are 
allowed to navigate the learning materials up to 10 times. 
The value is dynamic for each student since each learner 
has his or her own pace of reading the e-learning 
materials. Equation 4 is the review performance formula. 

 
Review_Perf(Li) = ∑ 5 ∗ _ 							  (4) 

  

Results of (2)-(4) were then combined into a single 
numerical value called fitness value, which indicates how well 
the topic was learned. The examination performance score is 
the most important among the three. When a student got a 
reasonably high examination score, usually greater than or 
equal to 75, then the other score does not matter much and the 
final mark is computed, denoted by (5). 
 

FScore = ∑ ∑ / ∗ 100    (5) 
 
However, if the examination performance score is less than 
75, the other equations become relevant and will produce a 
single numerical value called fitness value for each Lesson, 
FV(Li), in the e-learning module as indicated by using (6). 
 

FV(Li) = Exper(Li) + Review_Perf(Li) + SP(Li)    (6) 
 
In the case study, e-learning implementations, a 

chromosome or individual is denoted by lesson Li, where L 

stand for lesson and i refers to lesson number on the 
curriculum. Each lesson has fitness value that dynamically 
changes according to learner’s various performance matrixes. 
A high fitness value indicates high competency level achieve 
by the learners, while low fitness value indicates the presence 
of misconceptions. Misconception is defined as difficulty in 
learning, learning errors, low competency level, or a state that 
needs reinforcement and mastery. Thus, in e-learning, the 
lower the fitness values the more chances it will be included in 
the newly recommended personalized learning sequence. 

C. Correctness of the Equations 

The equations posted in previous section were simulated in 
excel and were tested separately before implemented in the 
prototype. Specifically (2)-(4) were normalized to be sure that 
each lesson score is directly proportional and distributed 
within the maximum score. Table I is a live data taken from 
different excel tables, and then dynamically populated the 
other table attributes. The simulations successfully 
recommend a personalized learning sequence; in the example, 
originally from 12 and then into four lessons. For the purpose 
of discussion, Table I was structured and presented to validate 
the implementation of the prototype. It can be seen that out of 
12 lessons, the system recommends a new sequence, L3, L10, 
L12 and L7, a decrease of 66%. Instead, the students will read 
and study the 12 chapter; the system recommends just four 
lessons. It is highly noted that only those lesson with “Failed” 
remarks in the Remarks column is recommended for further 
reading. The simulation was tested among 41 learners as 
subject for the case study. 

Based on the simulation, the performance of the reverse 
roulette wheel selection algorithms is heuristic after 
comparing the cumulative value column in Table I to the 
random numbers generated by the computer. This is valid in 
optimization and minimization technique since no exact 
learning path can be established in students’ learning process 
due to heterogenic nature of learners, nevertheless it has the 
capability to reduce and recommend a personalized learning 
sequence. Based on Table I, the personalized learning path is 
almost accurate. Instead of recommending the entire lesson 
results, lesson L3, L7, L10 and L12, have been selected as the 
new list of personalized sequence for re-study. In reading the 
learning materials, the system dynamically collected data of 
the learners’ and populate various performance matrixes in the 
database, for profiling learners.  

IV. RESULTS AND ANALYSIS 

Personalized learning sequence or PLS is a list of lessons 
which is generated from the e-learning prototype for re-study 
and possible learning reinforcement. The e-learning prototype 
was posted for 8 weeks online, where students can freely 
navigate the course materials and perform teaching tasks as 
discussed during the orientation. With 41 students, 10 students 
were selected as shown in Table II, structured for the purpose 
of discussion. Students were allowed to take summative 
examination three times. This number of summative 
examination is enough or perceived that at Level 2, all 
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TABLE II 
  SUMMARY OF PERSONALIZE LEARNING SEQUENCE 

Personalizes Learning Sequence 

Students Level 0 Level 1 Level 2 

1 L2, L4, L3, L7, L8, L9, L10, L12, L5 L2, L4, L3, L7, L8,L12, L5 L2, L4, L3, L5 

2 L1, L5, L3, L7, L8, L10, L12, L4 L1, L5, L4, L8, L10, L12, L7 L5, L8, L10, L12 

3 L2, L6, L3, L8, L7, L9, L1, L12, L5 L6, L3, L8, L7, L1, L12 L6, L3,L7, L1, L12 

4 L6, L4, L3, L7, L8, L9, L10, L12, L1 L7, L8, L9, L10, L12, L1 L9, L10, L12, L1 

5 L12, L6, L3, L7, L8, L9, L10, L1, L2 L6, L3, L2, L8, L9, L10, L1, L7 L6, L3, L2,L7 

6 L4, L3, L2, L7, L10, L9, L8, L12, L7 L4, L3, L2, L10, L7 L4,L10, L7 

7 L2, L4, L3, L7, L8, L9, L10, L12 L2, L4, L7, L8, L9, L10, L12 L2,L7, , L9, L10, L12 

8 L2, L4, L6, L7, L8, L9, L10, L12, L5 L8, L9, L10, L12, L5, L2 L9, L12, L5, L2 

9 L6, L1, L3, L7, L9, L10, L12, L4,L8 L6, L10, L3, L7, L1, L12, L4 ,L8 L6, L3, L1, L4 ,L8 

10 L2, L4, L3, L7, L5, L9, L10, L12, L11 L12, L4, L3, , L9,L11 L12, L4, L3, 

 

V. CONCLUSION AND FUTURE WORKS 

In this paper, the validity of the proposed reversed roulette 
wheel selection algorithm with sorting and linear ranking has 
been successfully implemented to produce a heuristic 
personalized learning sequence. Though heuristic, this concept 
is generally acceptable in the area of optimization since there 
is no exact learning path solution for a particular student due 
to varying background and prior knowledge of learner. The 
data used for computing the fitness value of each lesson is 
based on real and dynamic performance matrix of the student 
during the learning process. Likewise, the correctness of the 
fitness function were tested several time both in excel 
spreadsheet simulation and the prototype. Based on the 
algorithm, the complexity and the running time of the 
algorithm is O(n). Result shows that the achievement of the 
student during online assessment is increasing based on three 
summative examination results while their personalized 
leaning sequence is decreasing. Future works will take 
advantage of the results and will employ a corrective and 
reinforcement process to guarantee learning process. Also, 
testing will be done in a large scale implementation to 
benchmark with other PLS system that uses different 
revolutionary technique. 
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