Search results for: Surface integrity (SI)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2264

Search results for: Surface integrity (SI)

1514 Enhancement of Raman Scattering using Photonic Nanojet and Whispering Gallery Mode of a Dielectric Microstructure

Authors: A. Arya, R. Laha, V. R. Dantham

Abstract:

We report the enhancement of Raman scattering signal by one order of magnitude using photonic nanojet (PNJ) of a lollipop shaped dielectric microstructure (LSDM) fabricated by a pulsed CO₂ laser. Here, the PNJ is generated by illuminating sphere portion of the LSDM with non-resonant laser. Unlike the surface enhanced Raman scattering (SERS) technique, this technique is simple, and the obtained results are highly reproducible. In addition, an efficient technique is proposed to enhance the SERS signal with the help of high quality factor optical resonance (whispering gallery mode) of a LSDM. From the theoretical simulations, it has been found that at least an order of magnitude enhancement in the SERS signal could be achieved easily using the proposed technique. We strongly believe that this report will enable the research community for improving the Raman scattering signals.

Keywords: Localized surface plasmons, photonic nanojet, SERS, whispering gallery mode.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1084
1513 Application of Life Data Analysis for the Reliability Assessment of Numerical Overcurrent Relays

Authors: Mohd Iqbal Ridwan, Kerk Lee Yen, Aminuddin Musa, Bahisham Yunus

Abstract:

Protective relays are components of a protection system in a power system domain that provides decision making element for correct protection and fault clearing operations. Failure of the protection devices may reduce the integrity and reliability of the power system protection that will impact the overall performance of the power system. Hence it is imperative for power utilities to assess the reliability of protective relays to assure it will perform its intended function without failure. This paper will discuss the application of reliability analysis using statistical method called Life Data Analysis in Tenaga Nasional Berhad (TNB), a government linked power utility company in Malaysia, namely Transmission Division, to assess and evaluate the reliability of numerical overcurrent protective relays from two different manufacturers.

Keywords: Life data analysis, Protective relays, Reliability, Weibull Distribution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3960
1512 Basicity of Jordanian Natural Clays Studied by Pyrrole-tpd and Catalytic Conversion of Methylbutynol

Authors: M. Z. Alsawalha

Abstract:

The main objective of this study is to investigate basic properties of different natural clays, by two methods. The first method is a gas phase conversion of methylbutynol (MBOH). The second method is the application of Pyrrole-tpd. Based on the product distribution from the first method, the acidic, basic and coordinately unsaturated sites were differentiated. It was shown that both the conversion and the selectivity for basic products did not change with reaction time. Nevertheless, a deviation from the stoichiometric ratio R of formed acetylene to acetone was observed (R=0.8…0.97). The conversion normalized to the surface area was used for establishing the activity sequence: White kaolinite > red kaolinite > bentonite > zeolite > di­ato­mite. In addition, the results were compared with synthetic amorphous alumosilicates and typical basic materials like MgO and ZnO. The basic properties were characterized using the Pyrrole-tpd.  The Pyrrole-tpd results showed the same basicity sequence as the MBOH gas phase reaction.

Keywords: Alumosilicates, basic surface properties, natural clays, normalized conversions with acetylene and acetone, pyrrole-TPD adsorption.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1083
1511 Polishing Machine Based on High-Pressure Water Jet

Authors: Mohammad A. Khasawneh

Abstract:

The design of high pressure water jet based polishing equipment and its fabrication conducted in this study is reported herein, together with some preliminary test results for assessing its applicability for HMA surface polishing. This study also provides preliminary findings concerning the test variables, such as the rotational speed, the water jet pressure, the abrasive agent used, and the impact angel that were experimentally investigated in this study. The preliminary findings based on four trial tests (two on large slab specimens and two on small size gyratory compacted specimens), however, indicate that both friction and texture values tend to increase with the polishing durations for two combinations of pressure and rotation speed of the rotary deck. It seems that the more polishing action the specimen is subjected to; the aggregate edges are created such that the surface texture values are increased with the accompanied increase in friction values. It may be of interest (but which is outside the scope of this study) to investigate if the similar trend exist for HMA prepared with aggregate source that is sand and gravel.

Keywords: High-pressure, water jet, Friction, Texture, Polishing, Statistical Analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2025
1510 Gas Flow Rate Identification in Biomass Power Plants by Response Surface Method

Authors: J. Satonsaowapak, M. Krapeedang, R. Oonsivilai, A. Oonsivilai

Abstract:

The utilize of renewable energy sources becomes more crucial and fascinatingly, wider application of renewable energy devices at domestic, commercial and industrial levels is not only affect to stronger awareness but also significantly installed capacities. Moreover, biomass principally is in form of woods and converts to be energy for using by humans for a long time. Gasification is a process of conversion of solid carbonaceous fuel into combustible gas by partial combustion. Many gasified models have various operating conditions because the parameters kept in each model are differentiated. This study applied the experimental data including three inputs variables including biomass consumption; temperature at combustion zone and ash discharge rate and gas flow rate as only one output variable. In this paper, response surface methods were applied for identification of the gasified system equation suitable for experimental data. The result showed that linear model gave superlative results.

Keywords: Gasified System, Identification, Response SurfaceMethod

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1223
1509 Statistical Modeling for Permeabilization of a Novel Yeast Isolate for β-Galactosidase Activity Using Organic Solvents

Authors: Shweta Kumari, Parmjit S. Panesar, Manab B. Bera

Abstract:

The hydrolysis of lactose using β-galactosidase is one of the most promising biotechnological applications, which has wide range of potential applications in food processing industries. However, due to intracellular location of the yeast enzyme, and expensive extraction methods, the industrial applications of enzymatic hydrolysis processes are being hampered. The use of permeabilization technique can help to overcome the problems associated with enzyme extraction and purification of yeast cells and to develop the economically viable process for the utilization of whole cell biocatalysts in food industries. In the present investigation, standardization of permeabilization process of novel yeast isolate was carried out using a statistical model approach known as Response Surface Methodology (RSM) to achieve maximal b-galactosidase activity. The optimum operating conditions for permeabilization process for optimal β-galactosidase activity obtained by RSM were 1:1 ratio of toluene (25%, v/v) and ethanol (50%, v/v), 25.0 oC temperature and treatment time of 12 min, which displayed enzyme activity of 1.71 IU /mg DW.

Keywords: β-galactosidase, optimization, permeabilization, response surface methodology, yeast.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4113
1508 Optimisation of Polycyclic AromaticHydrocarbon Removal from Contaminated Soilusing Modified Fenton Treatment

Authors: Venny, S. Gan, H. K. Ng

Abstract:

The performance of modified Fenton (MF) treatment to promote PAH oxidation in artificially contaminated soil was investigated in packed soil column with a hydrogen peroxide (H2O2) delivery system simulating in situ injection. Soil samples were spiked with phenanthrene (low molecular weight PAH) and fluoranthene (high molecular weight PAH) to an initial concentration of 500 mg/kg dried soil each. The effectiveness of process parameters H2O2/soil, iron/soil, chelating agent/soil weight ratios and reaction time were studied using a 24 three level factorial design experiments. Statistically significant quadratic models were developed using Response Surface Methodology (RSM) for degrading PAHs from the soil samples. Optimum operating condition was achieved at mild range of H2O2/soil, iron/soil and chelating agent/soil weight ratios, indicating cost efficient method for treating highly contaminated lands.

Keywords: Fenton, polycyclic aromatic hydrocarbon, chelate, response surface methodology

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1690
1507 The Design of Imaginable Urban Road Landscape

Authors: Wang Zhenzhen, Wang Xu, Hong Liangping

Abstract:

With the rapid development of cities, the way that people commute has changed greatly, meanwhile, people turn to require more on physical and psychological aspects in the contemporary world. However, the current urban road landscape ignores these changes, for example, those road landscape elements are boring, confusing, fragmented and lack of integrity and hierarchy. Under such current situation, in order to shape beautiful, identifiable and unique road landscape, this article concentrates on the target of imaginability. This paper analyzes the main elements of the urban road landscape, the concept of image and its generation mechanism, and then discusses the necessity and connotation of building imaginable urban road landscape as well as the main problems existing in current urban road landscape in terms of imaginability. Finally, this paper proposes how to design imaginable urban road landscape in details based on a specific case.

Keywords: Identifiability, imaginability, road landscape, the image of the city.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3368
1506 Application of H2 -based Sliding Mode Control for an Active Magnetic Bearing System

Authors: Abdul Rashid Husain, Mohamad Noh Ahmad, Abdul Halim Mohd. Yatim

Abstract:

In this paper, application of Sliding Mode Control (SMC) technique for an Active Magnetic Bearing (AMB) system with varying rotor speed is considered. The gyroscopic effect and mass imbalance inherited in the system is proportional to rotor speed in which this nonlinearity effect causes high system instability as the rotor speed increases. Transformation of the AMB dynamic model into regular system shows that these gyroscopic effect and imbalance lie in the mismatched part of the system. A H2-based sliding surface is designed which bound the mismatched parts. The solution of the surface parameter is obtained using Linear Matrix Inequality (LMI). The performance of the controller applied to the AMB model is demonstrated through simulation works under various system conditions.

Keywords: Active magnetic bearing, sliding mode control, linear matrix inequality, mismatched uncertainty and imbalance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1580
1505 The Application of an Experimental Design for the Defect Reduction of Electrodeposition Painting on Stainless Steel Washers

Authors: Chansiri Singhtaun, Nattaporn Prasartthong

Abstract:

The purpose of this research is to reduce the amount of incomplete coating of stainless steel washers in the electrodeposition painting process by using an experimental design technique. The surface preparation was found to be a major cause of painted surface quality. The influence of pretreating and painting process parameters, which are cleaning time, chemical concentration and shape of hanger were studied. A 23 factorial design with two replications was performed. The analysis of variance for the designed experiment showed the great influence of cleaning time and shape of hanger. From this study, optimized cleaning time was determined and a newly designed electrical conductive hanger was proved to be superior to the original one. The experimental verification results showed that the amount of incomplete coating defects decreased from 4% to 1.02% and operation cost decreased by 10.5%.

Keywords: Defect reduction, design of experiments, electrodeposition painting, stainless steel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2242
1504 A Blockchain-Based Privacy-Preserving Physical Delivery System

Authors: Shahin Zanbaghi, Saeed Samet

Abstract:

The internet has transformed the way we shop. Previously, most of our purchases came in the form of shopping trips to a nearby store. Now, it is as easy as clicking a mouse. We have to be constantly vigilant about our personal information. In this work, our proposed approach is to encrypt the information printed on the physical packages, which include personal information in plain text using a symmetric encryption algorithm; then, we store that encrypted information into a Blockchain network rather than storing them in companies or corporations centralized databases. We present, implement and assess a blockchain-based system using Ethereum smart contracts. We present detailed algorithms that explain the details of our smart contract. We present the security, cost and performance analysis of the proposed method. Our work indicates that the proposed solution is economically attainable and provides data integrity, security, transparency and data traceability.

Keywords: Blockchain, Ethereum, smart contract, commit-reveal scheme.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 417
1503 Development and Optimization of Automated Dry-Wafer Separation

Authors: Tim Giesen, Christian Fischmann, Fabian Böttinger, Alexander Ehm, Alexander Verl

Abstract:

In a state-of-the-art industrial production line of photovoltaic products the handling and automation processes are of particular importance and implication. While processing a fully functional crystalline solar cell an as-cut photovoltaic wafer is subject to numerous repeated handling steps. With respect to stronger requirements in productivity and decreasing rejections due to defects the mechanical stress on the thin wafers has to be reduced to a minimum as the fragility increases by decreasing wafer thicknesses. In relation to the increasing wafer fragility, researches at the Fraunhofer Institutes IPA and CSP showed a negative correlation between multiple handling processes and the wafer integrity. Recent work therefore focused on the analysis and optimization of the dry wafer stack separation process with compressed air. The achievement of a wafer sensitive process capability and a high production throughput rate is the basic motivation in this research.

Keywords: Automation, Photovoltaic Manufacturing, Thin Wafer, Material Handling

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1653
1502 A Methodological Test to Study the Concrete Workability with the Fractal Model

Authors: F. Achouri, K. Chouicha

Abstract:

The main parameters affecting the workability are the water content, particle size, and the total surface of the grains, as long as the mixing water begins by wetting the surface of the grains and then fills the voids between the grains to form entrapped water, the quantity of water remaining is called free water. The aim of this study is to undertake a fractal approach through the relationship between the concrete formulation parameters and workability. To develop this approach a series of concrete taken from the literature was investigated by varying formulation parameters such as G/S, the quantity of cement C and the quantity of water W. We also call another model as the model of water layer thickness and model of paste layer thickness to judge their relevance, hence the following results: the relevance of the water layer thickness model is considered as a relevant when there is a variation in the water quantity. The model of the paste layer thickness is only applicable if we considered that the paste is made with the grain value Dmax = 2.85: value from which we see a stability of the model.

Keywords: Concrete, fractal method, paste layer thickness, water layer thickness, workability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1616
1501 Laser Beam Micro-Drilling Effect on Ti-6Al-4V Titanium Alloy Sheet Properties

Authors: Petr Homola, Roman Růžek

Abstract:

Laser beam micro-drilling (LBMD) is one of the most important non-contact machining processes of materials that are difficult to machine by means oeqf conventional machining methods used in various industries. The paper is focused on LBMD knock-down effect on Ti-6Al-4V (Grade 5) titanium alloy sheets properties. Two various process configurations were verified with a focus on laser damages in back-structure parts affected by the process. The effects of the LBMD on the material properties were assessed by means of tensile and fatigue tests and fracture surface analyses. Fatigue limit of LBMD configurations reached a significantly lower value between 15% and 30% of the static strength as compared to the reference raw material with 58% value. The farther back-structure configuration gives a two-fold fatigue life as compared to the closer LBMD configuration at a given stress applied.

Keywords: Fatigue, fracture surface, laser beam micro-drilling, titanium alloy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 742
1500 Strong Adhesion and High Wettability at Polyetheretherketone-Resin/Titanium-Dioxide Interface Obtained with Crystal-Orientation Control

Authors: Tomio Iwasaki, Yosuke Kawahito

Abstract:

The adhesion strength and wettability at the interfaces between a polyetheretherketone (PEEK) resin and titanium dioxide (TiO2) have become more important because direct joining of PEEK resin and titanium (Ti), whose surface has usually the oxide (TiO2), is needed not only in vehicles such as airplanes, automobiles, and space vehicles, but also in medical devices such as implants. To realize strong joint between the PEEK resin and TiO2, the dependence of the adhesion strength and wettability on crystal orientations of rutile TiO2 were investigated by using molecular simulations. Molecular dynamics simulations were conducted by combining quantum-mechanics equation of electrons with Newton’s equation of motion of nuclear coordinates (atomic coordinates). By putting a PEEK-resin sphere on a rutile TiO2 surface and by heating the system to 650 K, the contact angles at the interfaces were calculated to evaluate the wettability. After the system is cooled to 300 K from 650 K, to evaluate the adhesin strength, the adhesive fracture energy is calculated as the difference between the energy of the PEEK-TiO2 attached state and that of the PEEK-TiO2 detached state. The results of the contact angles showed that PEEK resin on the TiO2(100) and that on the TiO2(001) surface has low wettability with large contact angles. On the other hand, PEEK resin on the TiO2(110) surface has high wettability with a small contact angle. The results of the adhesive fracture energies showed that the adhesion at the PEEK-resin/TiO2(100) and PEEK-resin/TiO2(001) interfaces are weak. On the other hand, the adhesion at the PEEK-resin/TiO2(110) interface is strong. To clarify the reason that the higher wettability and stronger adhesion are obtained at the PEEK/TiO2(110) interface than at the at the PEEK/TiO2(100) and PEEK/TiO2(001) interfaces, atomic configurations at the interfaces were visualized. The atomic configuration at the PEEK/TiO2(110) interface showed that the lattice-matched coherent interface is realized, and the atomic density is high. On the other hand, the atomic configuration at the PEEK/TiO2(001) interface showed the lattice-unmatched incoherent interface. The atomic configuration at the PEEK/TiO2(100) interface showed that the atomic density is very low although the lattice-matched interface is realized. Therefore, the lattice matching and the high atomic density at the PEEK/TiO2(001) interface are considered to be dominant factors in the high wettability and strong adhesion.

Keywords: Adhesion, direct joining, PEEK, TiO2, wettability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 402
1499 The Analysis of TRACE/FRAPTRAN in the Fuel Rods of Maanshan PWR for LBLOCA

Authors: J. R. Wang, W.Y. Li, H.T. Lin, J.H. Yang, C. Shih, S.W. Chen

Abstract:

Fuel rod analysis program transient (FRAPTRAN)  code was used to study the fuel rod performance during a postulated  large break loss of coolant accident (LBLOCA) in Maanshan nuclear  power plant (NPP). Previous transient results from thermal hydraulic  code, TRACE, with the same LBLOCA scenario, were used as input  boundary conditions for FRAPTRAN. The simulation results showed  that the peak cladding temperatures and the fuel centerline  temperatures were all below the 10CFR50.46 LOCA criteria. In  addition, the maximum hoop stress was 18 MPa and the oxide  thickness was 0.003mm for the present simulation cases, which are all  within the safety operation ranges. The present study confirms that this  analysis method, the FRAPTRAN code combined with TRACE, is an  appropriate approach to predict the fuel integrity under LBLOCA with  operational ECCS.

 

Keywords: —FRAPTRAN, TRACE, LOCA, PWR.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2643
1498 Sustainable Design of Impinging Premixed Slot Jets

Authors: T.T. Wong, C.W. Leung, M.C. Wong

Abstract:

Cooktop burners are widely used nowadays. In cooktop burner design, nozzle efficiency and greenhouse gas(GHG) emissions mainly depend on heat transfer from the premixed flame to the impinging surface. This is a complicated issue depending on the individual and combined effects of various input combustion variables. Optimal operating conditions for sustainable burner design were rarely addressed, especially in the case of multiple slot-jet burners. Through evaluating the optimal combination of combustion conditions for a premixed slot-jet array, this paper develops a practical approach for the sustainable design of gas cooktop burners. Efficiency, CO and NOx emissions in respect of an array of slot jets using premixed flames were analysed. Response surface experimental design were applied to three controllable factors of the combustion process, viz. Reynolds number, equivalence ratio and jet-to-vessel distance. Desirability Function Approach(DFA) is the analytic technique used for the simultaneous optimization of the efficiency and emission responses.

Keywords: optimization, premixed slot jets

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1421
1497 Investigating the Effects of Thermal and Surface Energy on the Two-Dimensional Flow Characteristics of Oil in Water Mixture between Two Parallel Plates: A Lattice Boltzmann Method Study

Authors: W. Hasan, H. Farhat

Abstract:

A hybrid quasi-steady thermal lattice Boltzmann model was used to study the combined effects of temperature and contact angle on the movement of slugs and droplets of oil in water (O/W) system flowing between two parallel plates. The model static contact angle due to the deposition of the O/W droplet on a flat surface with simulated hydrophilic characteristic at different fluid temperatures, matched very well the proposed theoretical calculation. Furthermore, the model was used to simulate the dynamic behavior of droplets and slugs deposited on the domain’s upper and lower surfaces, while subjected to parabolic flow conditions. The model accurately simulated the contact angle hysteresis for the dynamic droplets cases. It was also shown that at elevated temperatures the required power to transport the mixture diminished remarkably.

Keywords: Lattice Boltzmann method, Gunstensen model, thermal, contact angle, high viscosity ratio.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 862
1496 Magnetohydrodynamics Boundary Layer Flows over a Stretching Surface with Radiation Effect and Embedded in Porous Medium

Authors: Siti Khuzaimah Soid, Zanariah Mohd Yusof, Ahmad Sukri Abd Aziz, Seripah Awang Kechil

Abstract:

A steady two-dimensional magnetohydrodynamics flow and heat transfer over a stretching vertical sheet influenced by radiation and porosity is studied. The governing boundary layer equations of partial differential equations are reduced to a system of ordinary differential equations using similarity transformation. The system is solved numerically by using a finite difference scheme known as the Keller-box method for some values of parameters, namely the radiation parameter N, magnetic parameter M, buoyancy parameter l , Prandtl number Pr and permeability parameter K. The effects of the parameters on the heat transfer characteristics are analyzed and discussed. It is found that both the skin friction coefficient and the local Nusselt number decrease as the magnetic parameter M and permeability parameter K increase. Heat transfer rate at the surface decreases as the radiation parameter increases.

Keywords: Keller-box, MHD boundary layer flow, permeability stretching.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1954
1495 Factors Affecting Weld Line Movement in Tailor Welded Blank

Authors: Shakil A. Kagzi, Sanjay Patil, Harit K. Raval

Abstract:

Tailor Welded Blanks (TWB) are utilized in automotive industries widely because of their advantage of weight and cost reduction and maintaining required strength and structural integrity. TWB consist of two or more sheet having dissimilar or similar material and thickness; welded together to form a single sheet before forming it to desired shape. Forming of the tailor welded blank is affected by ratio of thickness of blanks, ratio of their strength, etc. mainly due to in-homogeneity of material. In the present work the relative effect of these parameters on weld line movement is studied during deep drawing of TWB using FE simulation using HYPERWORKS. The simulation is validated with results from the literature. Simulations were than performed based on Taguchi orthogonal array followed by the ANOVA analysis to determine the significance of these parameters on forming of TWB.

Keywords: ANOVA, Deep drawing, Tailor Welded Blank, TWB, Weld line movement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2770
1494 Simulation of the Reactive Rotational Molding Using Smoothed Particle Hydrodynamics

Authors: A. Hamidi, S. Khelladi, L. Illoul, A. Tcharkhtchi

Abstract:

Reactive rotational molding (RRM) is a process to manufacture hollow plastic parts with reactive material has several advantages compared to conventional roto molding of thermoplastic powders: process cycle time is shorter; raw material is less expensive because polymerization occurs during processing and high-performance polymers may be used such as thermosets, thermoplastics or blends. However, several phenomena occur during this process which makes the optimization of the process quite complex. In this study, we have used a mixture of isocyanate and polyol as a reactive system. The chemical transformation of this system to polyurethane has been studied by thermal analysis and rheology tests. Thanks to these results of the curing process and rheological measurements, the kinetic and rheokinetik of polyurethane was identified. Smoothed Particle Hydrodynamics, a Lagrangian meshless method, was chosen to simulate reactive fluid flow in 2 and 3D configurations of the polyurethane during the process taking into account the chemical, and chemiorehological results obtained experimentally in this study.

Keywords: Reactive rotational molding, free surface flows, simulation, smoothed particle hydrodynamics, surface tension.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1054
1493 Sizing the Protection Devices to Control Water Hammer Damage

Authors: I. Abuiziah, A. Oulhaj, K. Sebari, D. Ouazar

Abstract:

The primary objectives of transient analysis are to determine the values of transient pressures that can result from flow control operations and to establish the design criteria for system equipment and devices (such as control devices and pipe wall thickness) so as to provide an acceptable level of protection against system failure due to pipe collapse or bursting. Because of the complexity of the equations needed to describe transients, numerical computer models are used to analyze transient flow hydraulics. An effective numerical model allows the hydraulic engineer to analyze potential transient events and to identify and evaluate alternative solutions for controlling hydraulic transients, thereby protecting the integrity of the hydraulic system. This paper presents the influence of using the protection devices to control the adverse effects due to excessive and low pressure occurs in the transient.

Keywords: Flow Transient, Water hammer, Pipeline System, Surge Tank, Simulation Model, Protection Devices.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9470
1492 Selection of Pichia kudriavzevii Strain for the Production of Single-Cell Protein from Cassava Processing Waste

Authors: Phakamas Rachamontree, Theerawut Phusantisampan, Natthakorn Woravutthikul, Peerapong Pornwongthong, Malinee Sriariyanun

Abstract:

A total of 115 yeast strains isolated from local cassava processing wastes were measured for crude protein content. Among these strains, the strain MSY-2 possessed the highest protein concentration (>3.5 mg protein/mL). By using molecular identification tools, it was identified to be a strain of Pichia kudriavzevii based on similarity of D1/D2 domain of 26S rDNA region. In this study, to optimize the protein production by MSY-2 strain, Response Surface Methodology (RSM) was applied. The tested parameters were the carbon content, nitrogen content, and incubation time. Here, the value of regression coefficient (R2) = 0.7194 could be explained by the model which is high to support the significance of the model. Under the optimal condition, the protein content was produced up to 3.77 g per L of the culture and MSY-2 strain contains 66.8 g protein per 100 g of cell dry weight. These results revealed the plausibility of applying the novel strain of yeast in single-cell protein production.

Keywords: Single cell protein, response surface methodology, yeast, cassava processing waste.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2655
1491 Magnetoviscous Effects on Axi-Symmetric Ferrofluid Flow over a Porous Rotating Disk with Suction/Injection

Authors: Vikas Kumar

Abstract:

The present study is carried out to investigate the magneto-viscous effects on incompressible ferrofluid flow over a porous rotating disc with suction or injection on the surface of the disc subjected to a magnetic field. The flow under consideration is axi-symmetric steady ferrofluid flow of electrically non-conducting fluid. Karman’s transformation is used to convert the governing boundary layer equations involved in the problem to a system of non linear coupled differential equations. The solution of this system is obtained by using power series approximation. The flow characteristics i.e. radial, tangential, axial velocities and boundary layer displacement thickness are calculated for various values of MFD (magnetic field dependent) viscosity and for different values of suction injection parameter. Besides this, skin friction coefficients are also calculated on the surface of the disk. The results thus obtained are presented numerically and graphically in the paper.

Keywords: Axi-symmetric, ferrofluid, magnetic field, porous rotating disk.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2027
1490 Thermal and Mechanical Buckling of Short and Long Functionally Graded Cylindrical Shells Using First Order Shear Deformation Theory

Authors: O. Miraliyari, M.M. Najafizadeh, A.R. Rahmani, A. Momeni Hezaveh

Abstract:

This paper presents the buckling analysis of short and long functionally graded cylindrical shells under thermal and mechanical loads. The shell properties are assumed to vary continuously from the inner surface to the outer surface of the shell. The equilibrium and stability equations are derived using the total potential energy equations, Euler equations and first order shear deformation theory assumptions. The resulting equations are solved for simply supported boundary conditions. The critical temperature and pressure loads are calculated for both short and long cylindrical shells. Comparison studies show the effects of functionally graded index, loading type and shell geometry on critical buckling loads of short and long functionally graded cylindrical shells.

Keywords: Buckling, Functionally graded materials, Short and long cylindrical shell, Thermal and mechanical loads.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2127
1489 Comparing Field Displacement History with Numerical Results to Estimate Geotechnical Parameters: Case Study of Arash-Esfandiar-Niayesh under Passing Tunnel, 2.5 Traffic Lane Tunnel, Tehran, Iran

Authors: A. Golshani, M. Gharizade Varnusefaderani, S. Majidian

Abstract:

Underground structures are of those structures that have uncertainty in design procedures. That is due to the complexity of soil condition around. Under passing tunnels are also such affected structures. Despite geotechnical site investigations, lots of uncertainties exist in soil properties due to unknown events. As results, it possibly causes conflicting settlements in numerical analysis with recorded values in the project. This paper aims to report a case study on a specific under passing tunnel constructed by New Austrian Tunnelling Method in Iran. The intended tunnel has an overburden of about 11.3m, the height of 12.2m and, the width of 14.4m with 2.5 traffic lane. The numerical modeling was developed by a 2D finite element program (PLAXIS Version 8). Comparing displacement histories at the ground surface during the entire installation of initial lining, the estimated surface settlement was about four times the field recorded one, which indicates that some local unknown events affect that value. Also, the displacement ratios were in a big difference between the numerical and field data. Consequently, running several numerical back analyses using laboratory and field tests data, the geotechnical parameters were accurately revised to match with the obtained monitoring data. Finally, it was found that usually the values of soil parameters are conservatively low-estimated up to 40 percent by typical engineering judgment. Additionally, it could be attributed to inappropriate constitutive models applied for the specific soil condition.

Keywords: NATM, surface displacement history, soil tests, monitoring data, numerical back-analysis, geotechnical parameters.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 767
1488 Self-Propelled Intelligent Robotic Vehicle Based on Octahedral Dodekapod to Move in Active Branched Pipelines with Variable Cross-Sections

Authors: Sergey N. Sayapin, Anatoly P. Karpenko, Suan H. Dang

Abstract:

Comparative analysis of robotic vehicles for pipe inspection is presented in this paper. The promising concept of self-propelled intelligent robotic vehicle (SPIRV) based on octahedral dodekapod for inspection and operation in active branched pipelines with variable cross-sections is reasoned. SPIRV is able to move in pipeline, regardless of its spatial orientation. SPIRV can also be used to move along the outside of the pipelines as well as in space between surfaces of annular tubes. Every one of faces of the octahedral dodekapod can clamp/unclamp a thing with a closed loop surface of various forms as well as put pressure on environmental surface of contact. These properties open new possibilities for its applications in SPIRV. We examine design principles of octahedral dodekapod as future intelligent building blocks for various robotic vehicles that can self-move and self-reconfigure.

Keywords: Modular robot, octahedral dodekapod, pipe inspection robot, spatial parallel structure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1095
1487 Prediction Modeling of Compression Properties of a Knitted Sportswear Fabric Using Response Surface Method

Authors: Jawairia Umar, Tanveer Hussain, Zulfiqar Ali, Muhammad Maqsood

Abstract:

Different knitted structures and knitted parameters play a vital role in the stretch and recovery management of compression sportswear in addition to the materials use to generate this stretch and recovery behavior of the fabric. The present work was planned to predict the different performance indicators of a compression sportswear fabric with some ground parameters i.e. base yarn stitch length (polyester as base yarn and spandex as plating yarn involve to make a compression fabric) and linear density of the spandex which is a key material of any sportswear fabric. The prediction models were generated by response surface method for performance indicators such as stretch & recovery percentage, compression generated by the garment on body, total elongation on application of high power force and load generated on certain percentage extension in fabric. Certain physical properties of the fabric were also modeled using these two parameters.

Keywords: Compression, sportswear, stretch and recovery, statistical model, kikuhime.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2018
1486 Urban Floods and Importance of Them in Cities Security Planning (Case Study: Dominant Watershed on Zavvareh City)

Authors: Jalil Emadi, Masoud Nasri, Ali Najafi, Yousef Moradi Shahgharyeh

Abstract:

Development of cities and villages, agricultural farms and industrial regions in abutment and/or in the course of streams and rivers or in prone flood lands has been caused more notations in hydrology problems and city planning topics. In order to protection of cities against of flood damages, embankment construction is a desired and scientific method. The cities that located in arid zones may damage by floods periodically. Zavvareh city in Ardestan township(Isfahan province) with 7704 people located in Ardestan plain that has been damaged by floods that have flowed from dominant mountainous watersheds in past years with regard to return period. In this study, according to flowed floods toward Zavvareh city, was attempt to plan suitable hydraulic structures such as canals, bridges and collectors in order to collection, conduction and depletion of city surface runoff.

Keywords: Flood, flood way, executive consideration, embankment, surface runoff network, Zavvareh.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1587
1485 The Effects of NaF Concentration on the Zinc Coating Electroplated in Supercritical CO2 Mixed Zinc Chloride Bath

Authors: Chun-Ying Lee, Mei-Wen Wu, Li-Yi Cheng, Chiang-Ho Cheng

Abstract:

This research studies the electroplating of zinc coating in the zinc chloride bath mixed with supercritical CO2. The sodium fluoride (NaF) was used as the bath additive to change the structure and property of the coating, and therefore the roughness and corrosion resistance of the zinc coating was investigated. The surface characterization was performed using optical microscope (OM), X-ray diffractometer (XRD), and α-step profilometer. Moreover, the potentiodynamic polarization measurement in 3% NaCl solution was employed in the corrosion resistance evaluation. Because of the emulsification of the electrolyte mixed in Sc-CO2, the electroplated zinc produced the coating with smoother surface, smaller grain, better throwing power and higher corrosion resistance. The main role played by the NaF was to reduce the coating’s roughness and grain size. In other words, the CO2 mixed with the electrolyte under the supercritical condition performed the similar function as brighter and leveler in zinc electroplating to enhance the throwing power and corrosion resistance of the coating.

Keywords: Supercritical CO2, zinc-electroplating, sodium fluoride.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2030