Search results for: Soil inorganic carbon
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1695

Search results for: Soil inorganic carbon

945 Effects of Sea Water Level Fluctuations on Seismic Response of Jacket Type Offshore Platforms

Authors: M. Rad, M. Dolatshahi Pirooz, M. Esmayili

Abstract:

To understand the seismic behavior of the offshore structures, the dynamic interaction of the water-structure-soil should be assessed. In this regard the role of the water dynamic properties in magnifying or reducing of the effects of earthquake induced motions on offshore structures haven't been investigated in precise manner in available literature. In this paper the sea water level fluctuations effects on the seismic behavior of a sample of offshore structures has been investigated by emphasizing on the water-structure interaction phenomenon. For this purpose a two dimensional finite element model of offshore structures as well as surrounded water has been developed using ANSYS software. The effect of soil interaction with embedded pile foundation has been imposed by using a series of nonlinear springs in horizontal and vertical directions in soil-piles contact points. In the model, the earthquake induced motions have been applied on springs and consequently the motions propagated upward to the structure and surrounded water. As a result of numerical study, the horizontal deformations of the offshore deck as well as internal force and buckling coefficient in structural elements have been recorded and controlled with and without water presence. In part of study a parametric study has been accomplished on sea water level fluctuations and effect of this parameter has been studied on the aforementioned numerical results.

Keywords: Fluid-Structure Interaction, Jacket, Sea Water Level, Seismic Loading.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2066
944 Reinforcement Effect on Dynamic Properties of Saturated Sand

Authors: R. Ziaie Moayed, M. Alibolandi

Abstract:

Dynamic behavior of soil are evaluated relative to a number of factors including: strain level, density, number of cycles, material type, fine content, geosynthetic inclusion, saturation, and effective stress .This paper investigate the dynamic behavior of saturated reinforced sand under cyclic stress condition. The cyclic triaxial tests are conducted on remolded specimens under various CSR which reinforced by different arrangement of non-woven geotextile. Aforementioned tests simulate field reinforced saturated deposits during earthquake or other cyclic loadings. This analysis revealed that the geotextile arrangement played dominant role on dynamic soil behavior and as geotextile close to top of specimen, the liquefaction resistance increased.

Keywords: Dynamic Behavior, Reinforced Sand, Triaxial Test, Non-woven Geotextile.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2750
943 Enhanced Thermal, Mechanical and Morphological Properties of CNT/HDPE Nanocomposite Using MMT as Secondary Filler

Authors: M. E. Ali Mohsin, Agus Arsad, Othman Y. Alothman

Abstract:

This study explains the influence of secondary filler on the dispersion of carbon nanotube (CNT) reinforced high density polyethylene (HDPE) nanocomposites (CNT/HDPE). In order to understand the mixed-fillers system, Montmorillonite (MMT) was added to CNT/HDPE nanocomposites. It was followed by investigating their effect on the thermal, mechanical and morphological properties of the aforesaid nanocomposite. Incorporation of 3 wt% each of MMT into CNT/HDPE nanocomposite resulted to the increased values for the tensile and flexural strength, as compared to the pure HDPE matrix. The thermal analysis result showed improved thermal stability of the formulated nanocomposites. Transmission electron microscopy (TEM) images revealed that larger aggregates of CNTs were disappeared upon addition of these two components leading to the enhancement of thermo-mechanical properties for such composites.

Keywords: Secondary filler, Montmorillonite, Carbon nanotube, nanocomposite.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3214
942 Displacement Fields in Footing-Sand Interactions under Cyclic Loading

Authors: S. Joseph Antony, Z. K. Jahanger

Abstract:

Soils are subjected to cyclic loading in situ in situations such as during earthquakes and in the compaction of pavements. Investigations on the local scale measurement of the displacements of the grain and failure patterns within the soil bed under the cyclic loading conditions are rather limited. In this paper, using the digital particle image velocimetry (DPIV), local scale displacement fields of a dense sand medium interacting with a rigid footing are measured under the plane-strain condition for two commonly used types of cyclic loading, and the quasi-static loading condition for the purposes of comparison. From the displacement measurements of the grains, the failure envelopes of the sand media are also presented. The results show that, the ultimate cyclic bearing capacity (qultcyc) occurred corresponding to a relatively higher settlement value when compared with that of under the quasi-static loading. For the sand media under the cyclic loading conditions considered here, the displacement fields in the soil media occurred more widely in the horizontal direction and less deeper along the vertical direction when compared with that of under the quasi-static loading. The 'dead zone' in the sand grains beneath the footing is identified for all types of the loading conditions studied here. These grain-scale characteristics have implications on the resulting bulk bearing capacity of the sand media in footing-sand interaction problems.

Keywords: Cyclic loading, DPIV, settlement, soil-structure interactions, strip footing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 856
941 Adhesion Problematic for Novel Non-Crimp Fabric and Surface Modification of Carbon-Fibres Using Oxy-Fluorination

Authors: Iris Käppler, Paul Matthäi, Chokri Cherif

Abstract:

In the scope of application of technical textiles, Non- Crimp Fabrics are increasingly used. In general, NCF exhibit excellent load bearing properties, but caused by the manufacturing process, there are some remaining disadvantages which have to be reduced. Regarding to this, a novel technique of processing NCF was developed substituting the binding-thread by an adhesive. This stitchfree method requires new manufacturing concept as well as new basic methods to prove adhesion of glue at fibres and textiles. To improve adhesion properties and the wettability of carbon-fibres by the adhesive, oxy-fluorination was used. The modification of carbonfibres by oxy-fluorination was investigated via scanning electron microscope, X-ray photoelectron spectroscopy and single fibre tensiometry. Special tensile tests were developed to determine the maximum force required for detachment.

Keywords: Non-Crimp Fabric, adhesive, stitch-free, high-performance fibre.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2012
940 Characteristics of Wall Thickness Increase in Pipe Reduction Process using Planetary Rolls

Authors: Yuji Kotani, Shunsuke Kanai, Hisaki Watari

Abstract:

In recent years, global warming has become a worldwide problem. The reduction of carbon dioxide emissions is a top priority for many companies in the manufacturing industry. In the automobile industry as well, the reduction of carbon dioxide emissions is one of the most important issues. Technology to reduce the weight of automotive parts improves the fuel economy of automobiles, and is an important technology for reducing carbon dioxide. Also, even if this weight reduction technology is applied to electric automobiles rather than gasoline automobiles, reducing energy consumption remains an important issue. Plastic processing of hollow pipes is one important technology for realizing the weight reduction of automotive parts. Ohashi et al. [1],[2] present an example of research on pipe formation in which a process was carried out to enlarge a pipe diameter using a lost core, achieving the suppression of wall thickness reduction and greater pipe expansion than hydroforming. In this study, we investigated a method to increase the wall thickness of a pipe through pipe compression using planetary rolls. The establishment of a technology whereby the wall thickness of a pipe can be controlled without buckling the pipe is an important technology for the weight reduction of products. Using the finite element analysis method, we predicted that it would be possible to increase the compression of an aluminum pipe with a 3mm wall thickness by approximately 20%, and wall thickness by approximately 20% by pressing the hollow pipe with planetary rolls.

Keywords: Pipe-Forming, Wall Thickness, Finite-element-method

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2962
939 Prediction Heating Values of Lignocellulosics from Biomass Characteristics

Authors: Kaltima Phichai, Pornchanoke Pragrobpondee, Thaweesak Khumpart, Samorn Hirunpraditkoon

Abstract:

The paper provides biomasses characteristics by proximate analysis (volatile matter, fixed carbon and ash) and ultimate analysis (carbon, hydrogen, nitrogen and oxygen) for the prediction of the heating value equations. The heating value estimation of various biomasses can be used as an energy evaluation. Thirteen types of biomass were studied. Proximate analysis was investigated by mass loss method and infrared moisture analyzer. Ultimate analysis was analyzed by CHNO analyzer. The heating values varied from 15 to 22.4MJ kg-1. Correlations of the calculated heating value with proximate and ultimate analyses were undertaken using multiple regression analysis and summarized into three and two equations, respectively. Correlations based on proximate analysis illustrated that deviation of calculated heating values from experimental heating values was higher than the correlations based on ultimate analysis.

Keywords: Heating value equation, Proximate analysis, Ultimate analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3683
938 Mechanism and Kinetic of Layers Growth: Application to Nitriding of 32CrMoV13 Steel

Authors: L. Torchane

Abstract:

In this work, our goal is to optimize the nitriding treatment at a low-temperature of the steel 32CrMoV13 using gas mixtures of ammonia, nitrogen and hydrogen to improve the mechanical properties of the surface (good wear resistance, friction and corrosion), and of the diffusion layer of the nitrogen (good resistance to fatigue and good tenacity with heart). By limiting our work to the pure iron and to the alloys iron-chromium and iron-chromium-carbon, we have studied the various parameters which manage the nitriding: flow rate and composition of the gaseous phase, the interaction chromium-nitrogen and chromium-carbon by the help of experiments of nitriding realized in the laboratory by thermogravimetry. The acquired knowledge has been applied by the mastery of the growth of the γ' combination layer on the α diffusion layer in the case of the industrial steel 32CrMoV13.

Keywords: Diffusion of nitrogen, Gaseous nitriding, Layer growth kinetic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1568
937 Contamination of Organochlorine Pesticides in Nest Soil, Egg, and Blood of the Snail-eating Turtle (Malayemys macrocephala) from the Chao Phraya River Basin, Thailand

Authors: Sarun Keithmaleesatti, Pakorn Varanusupakul, Wattasit Siriwong, Kumthorn Thirakhupt, Mark Robson, Noppadon Kitana

Abstract:

Organochlorine pesticides (OCPs) are known to be persistent and bioaccumulative toxicants that may cause reproductive impairments in wildlife as well as human. The current study uses the snail-eating turtle Malayemys macrocephala, a long-lived animal commonly distribute in rice field habitat in central part of Thailand, as a sentinel to monitor OCP contamination in environment. The nest soil, complete clutch of eggs, and blood of the turtle were collected from agricultural areas in the Chao Phraya River Basin, Thailand during the nesting season of 2007-2008. The novel methods for tissue extraction by an accelerated solvent extractor (ASE, for egg) and liquid-liquid extraction (for blood) have been developed. The nineteen OCP residues were analyzed by gas chromatography with micro-electron captured detector (GC-μECD). The validated methods have met requirements of the AOAC standard. The results indicated that significant amounts of OCPs are still contaminated in nest soil and eggs of the turtle even though the OCPs had been banned in this area for many years. This suggested the potential risk to health of wildlife as well as human in the area.

Keywords: Gas chromatography, persistent organic pollutants, rice field, sentinel species.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1796
936 Bearing Behavior of a Hybrid Monopile Foundation for Offshore Wind Turbines

Authors: Zicheng Wang

Abstract:

Offshore wind energy provides a huge potential for the expansion of renewable energies to the coastal countries. High demands are required concerning the shape and type of foundations for offshore wind turbines (OWTs) to find an economically, technically and environmentally-friendly optimal solution. A promising foundation concept is the hybrid foundation system, which consists of a steel plate attached to the outer side of a hollow steel pipe pile. In this study, the bearing behavior of a large diameter foundation is analyzed using a 3-dimensional finite element (FE) model. Non-linear plastic soil behavior is considered. The results of the numerical simulations are compared to highlight the priority of the hybrid foundation to the conventional monopile foundation.

Keywords: Hybrid foundation system, mechanical parameters, plastic soil behaviors, numerical simulations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 588
935 Effect of Shallow Groundwater Table on the Moisture Depletion Pattern in Crop Root Zone

Authors: Vijay Shankar

Abstract:

Different techniques for estimating seasonal water use from soil profile water depletion frequently do not account for flux below the root zone. Shallow water table contribution to supply crop water use may be important in arid and semi-arid regions. Development of predictive root uptake models, under influence of shallow water table makes it possible for planners to incorporate interaction between water table and root zone into design of irrigation projects. A model for obtaining soil moisture depletion from root zone and water movement below it is discussed with the objective to determine impact of shallow water table on seasonal moisture depletion patterns under water table depth variation, up to the bottom of root zone. The role of different boundary conditions has also been considered. Three crops: Wheat (Triticum aestivum), Corn (Zea mays) and Potato (Solanum tuberosum), common in arid & semi-arid regions, are chosen for the study. Using experimentally obtained soil moisture depletion values for potential soil moisture conditions, moisture depletion patterns using a non linear root uptake model have been obtained for different water table depths. Comparative analysis of the moisture depletion patterns under these conditions show a wide difference in percent depletion from different layers of root zone particularly top and bottom layers with middle layers showing insignificant variation in moisture depletion values. Moisture depletion in top layer, when the water table rises to root zone increases by 19.7%, 22.9% & 28.2%, whereas decrease in bottom layer is 68.8%, 61.6% & 64.9% in case of wheat, corn & potato respectively. The paper also discusses the causes and consequences of increase in moisture depletion from top layers and exceptionally high reduction in bottom layer, and the possible remedies for the same. The numerical model developed for the study can be used to help formulating irrigation strategies for areas where shallow groundwater of questionable quality is an option for crop production.

Keywords: Moisture Depletion, crop root zone, ground water table, irrigation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2007
934 Numerical Simulations of Frost Heave Using COMSOL Multiphysics Software in Unsaturated Freezing Soils

Authors: Sara Soltanpour, Adolfo Foriero

Abstract:

Frost heave is arguably the most problematic adverse phenomenon in cold region areas. It is a complex process that depends on heat and water transfer. The coupled physical fields generate considerable heave stresses as well as deformations. In the present study, a coupled Thermal-Hydraulic-Mechanical (THM) model using COMSOL Multiphysics in frozen unsaturated soils, such as fine sand, is investigated. Particular attention to the frost heave and temperature distribution, as well as the water migrating during soil freezing, is assessed. The results obtained from the numerical simulations are consistent with the results measured in the full-scale tests conducted by Cold Regions Research and Engineering Laboratory (CRREL).

Keywords: Frost heave, numerical simulations, COMSOL software, unsaturated freezing soil.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 235
933 The Effectiveness of Mineral Fertilization of Winter Wheat by Nitrogen in the Soil and Climatic Conditions in the Cr

Authors: Václav Voltr, Jan Leština

Abstract:

The basis of examines is survey of 500 in the years 2002-2010, which was selected according to homogeneity of land cover and where 1090 revenues were evaluated. For achieved yields of winter wheat is obtained multicriterial regression function depending on the major factors influencing the consumption of nitrogen. The coefficient of discrimination of the established model is 0.722. The increase in efficiency of fertilization is involved in supply of organic nutrients, tillage, soil pH, past weather, the humus content in the subsoil and grain content to 0.001 mm. The decrease in efficiency was mainly influenced by the total dose of mineral nitrogen, although it was divided into multiple doses, the proportion loamy particles up to 0.01 mm, rainy, or conversely dry weather during the vegetation. The efficiency of nitrogen was found to be the smallest on undeveloped soils and the highest on chernozem and alluvial soils.

Keywords: Nitrogen efficiency, winter wheat, regression model

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1420
932 Experimental Investigation and Sensitivity Analysis for the Effects of Fracture Parameters to the Conductance Properties of Laterite

Authors: Bai Wei, Kong Ling-Wei, Guo Ai-Guo

Abstract:

This experiment discusses the effects of fracture parameters such as depth, length, width, angle and the number of the fracture to the conductance properties of laterite using the DUK-2B digital electrical measurement system combined with the method of simulating the fractures. The results of experiment show that the changes of fracture parameters produce effects to the conductance properties of laterite. There is a clear degressive period of the conductivity of laterite during increasing the depth, length, width, or the angle and the quantity of fracture gradually. When the depth of fracture exceeds the half thickness of the soil body, the conductivity of laterite shows evidently non-linear diminishing pattern and the amplitude of decrease tends to increase. The length of fracture has fewer effects than the depth to the conductivity. When the width of fracture reaches some fixed values, the change of the conductivity is less sensitive to the change of the width, and at this time, the conductivity of laterite maintains at a stable level. When the angle of fracture is less than 45°, the decrease of the conductivity is more clearly as the angle increases. But when angle is more than 45°, change of the conductivity is relatively gentle as the angle increases. The increasing quantity of the fracture causes the other fracture parameters having great impact on the change of conductivity. When moisture content and temperature were unchanged, depth and angle of fractures are the major factors affecting the conductivity of laterite soil; quantity, length, and width are minor influencing factors. The sensitivity of fracture parameters affect conductivity of laterite soil is: depth >angles >quantity >length >width.

Keywords: laterite, fracture parameters, conductance properties, conductivity, uniform design, sensitivity analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1409
931 Synchrotron X-Ray Based Investigation of As and Fe Bonding Environment in Collard Green Tissue Samples at Different Growth Stages

Authors: Sunil Dehipawala, Aregama Sirisumana, P. Schneider, G. Tremberger Jr, D. Lieberman, Todd Holden T. Cheung

Abstract:

The arsenic and iron environments in different growth stages have been studied with EXAFS and XANES using Brookhaven Synchrotron Light Source. Collard Greens plants were grown and tissue samples were harvested. The project studied the EXAFS and XANES of tissue samples using As and Fe K-edges. The Fe absorption and the Fourier transform bond length information were used as a control comparison. The Fourier transform of the XAFS data revealed the coexistence of As (III) and As (V) in the As bonding environment inside the studied plant tissue samples, although the soil only had As (III). The data suggests that Collard Greens has a novel pathway to handle arsenic absorption in soil.

Keywords: EXAFS, Fourier Transform, metalloproteins, XANES.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1911
930 Seismic Analysis of Structurally Hybrid Wind Mill Tower

Authors: Atul K. Desai, Hemal J. Shah

Abstract:

The tall windmill towers are designed as monopole tower or lattice tower. In the present research, a 125-meter high hybrid tower which is a combination of lattice and monopole type is proposed. The response of hybrid tower is compared with conventional monopole tower. The towers were analyzed in finite element method software considering nonlinear seismic time history load. The synthetic seismic time history for different soil is derived using the SeismoARTIF software. From the present research, it is concluded that, in the hybrid tower, we are not getting resonance condition. The base shear is less in hybrid tower compared to monopole tower for different soil conditions.

Keywords: Dynamic analysis, hybrid wind mill tower, resonance condition, synthetic time history.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 731
929 Effect of Fill Material Density under Structures on Ground Motion Characteristics Due to Earthquake

Authors: Ahmed T. Farid, Khaled Z. Soliman

Abstract:

Due to limited areas and excessive cost of land for projects, backfilling process has become necessary. Also, backfilling will be done to overcome the un-leveling depths or raising levels of site construction, especially near the sea region. Therefore, backfilling soil materials used under the foundation of structures should be investigated regarding its effect on ground motion characteristics, especially at regions subjected to earthquakes. In this research, 60-meter thickness of sandy fill material was used above a fixed 240-meter of natural clayey soil underlying by rock formation to predict the modified ground motion characteristics effect at the foundation level. Comparison between the effect of using three different situations of fill material compaction on the recorded earthquake is studied, i.e. peak ground acceleration, time history, and spectra acceleration values. The three different densities of the compacted fill material used in the study were very loose, medium dense and very dense sand deposits, respectively. Shake computer program was used to perform this study. Strong earthquake records, with Peak Ground Acceleration (PGA) of 0.35 g, were used in the analysis. It was found that, higher compaction of fill material thickness has a significant effect on eliminating the earthquake ground motion properties at surface layer of fill material, near foundation level. It is recommended to consider the fill material characteristics in the design of foundations subjected to seismic motions. Future studies should be analyzed for different fill and natural soil deposits for different seismic conditions.

Keywords: Fill, material, density, compaction, earthquake, PGA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 860
928 The Potential of Natural Waste (Corn Husk) for Production of Environmental Friendly Biodegradable Film for Seedling

Authors: M. Z. Norashikin, M. Z. Ibrahim

Abstract:

The use of plastic materials in agriculture causes serious hazards to the environment. The introduction of biodegradable materials, which can be disposed directly into the soil can be one possible solution to this problem. In the present research results of experimental tests carried out on biodegradable film fabricated from natural waste (corn husk) are presented. The film was characterized by Fourier transform infrared spectroscopy (FTIR), differential scanning calorimeter (DSC), thermal gravimetric analysis (TGA) and atomic force microscope (AFM) observation. The film is shown to be readily degraded within 7-9 months under controlled soil conditions, indicating a high biodegradability rate. The film fabricated was use to produce biodegradable pot (BioPot) for seedlings plantation. The introduction and the expanding use of biodegradable materials represent a really promising alternative for enhancing sustainable and environmentally friendly agricultural activities.

Keywords: Environment, waste, plastic, biodegradable.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4963
927 Analytic on Various Grounding Configurations in Uniform Layer Soil

Authors: Mohd Shahriman B. Mohd Yunus, Mohd Hanif B. Jamaludin, Norain Bt. Bahror

Abstract:

The performance of an embedded grounding system is very important for the safe operation of electrical appliances and human beings. In principle, a safe grounding system has two objectives, which are to dissipate fault current without exceeding any operating and equipment limits and to ensure there is no risk of electric shock to humans in the vicinity of earthed facilities. The case studies in this paper present the calculating grounding resistance for multiple configurations of vertical and horizontally by using a simple and accurate formula. From the analytic calculated results, observed good/empirical relationship between the grounding resistance and length of the embedded grounding configurations. Moreover, the configurations of vertical and horizontal observed effectiveness of grounding resistance and good agreement on the reduction of grounding resistance values especially for vertical configuration.

Keywords: Grounding system, grounding resistance, soil resistivity, electrode geometry, configurations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 452
926 Application the Statistical Conditional Entropy Function for Definition of Cause-and-Effect Relations during Primary Soil Formation

Authors: Vladimir K. Mukhomorov

Abstract:

Within the framework of a method of the information theory it is offered statistics and probabilistic model for definition of cause-and-effect relations in the coupled multicomponent subsystems. The quantitative parameter which is defined through conditional and unconditional entropy functions is introduced. The method is applied to the analysis of the experimental data on dynamics of change of the chemical elements composition of plants organs (roots, reproductive organs, leafs and stems). Experiment is directed on studying of temporal processes of primary soil formation and their connection with redistribution dynamics of chemical elements in plant organs. This statistics and probabilistic model allows also quantitatively and unambiguously to specify the directions of the information streams on plant organs.

Keywords: Chemical elements, entropy function, information, plants.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1341
925 An Evaluation of Carbon Dioxide Emissions Trading among Enterprises -The Tokyo Cap and Trade Program-

Authors: Hiroki Satou, Kayoko Yamamoto

Abstract:

This study aims to propose three evaluation methods to evaluate the Tokyo Cap and Trade Program when emissions trading is performed virtually among enterprises, focusing on carbon dioxide (CO2), which is the only emitted greenhouse gas that tends to increase. The first method clarifies the optimum reduction rate for the highest cost benefit, the second discusses emissions trading among enterprises through market trading, and the third verifies long-term emissions trading during the term of the plan (2010-2019), checking the validity of emissions trading partly using Geographic Information Systems (GIS). The findings of this study can be summarized in the following three points. 1. Since the total cost benefit is the greatest at a 44% reduction rate, it is possible to set it more highly than that of the Tokyo Cap and Trade Program to get more total cost benefit. 2. At a 44% reduction rate, among 320 enterprises, 8 purchasing enterprises and 245 sales enterprises gain profits from emissions trading, and 67 enterprises perform voluntary reduction without conducting emissions trading. Therefore, to further promote emissions trading, it is necessary to increase the sales volumes of emissions trading in addition to sales enterprises by increasing the number of purchasing enterprises. 3. Compared to short-term emissions trading, there are few enterprises which benefit in each year through the long-term emissions trading of the Tokyo Cap and Trade Program. Only 81 enterprises at the most can gain profits from emissions trading in FY 2019. Therefore, by setting the reduction rate more highly, it is necessary to increase the number of enterprises that participate in emissions trading and benefit from the restraint of CO2 emissions.

Keywords: Emissions Trading, Tokyo Cap and Trade Program, Carbon Dioxide (CO2), Global Warming, Geographic Information Systems (GIS)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2146
924 The Influence of Organic Waste on Vegetable Nutritional Components and Healthy Livelihood, Minna, Niger State, Nigeria

Authors: A. Abdulkadir, A. A. Okhimamhe, Y. M. Bello, H. Ibrahim, D. H. Makun, M. T. Usman

Abstract:

Household waste form a larger proportion of waste generated across the state, accumulation of organic waste is an apparent problem and the existing dump sites could be overstress. Niger state has abundant arable land and water resources thus should be one of the highest producers of agricultural crops in the country. However, the major challenge to agricultural sector today is loss of soil nutrient coupled with high cost of fertilizer. These have continued to increase the use of fertilizer and decomposed solid waste for enhance agricultural yield, which have varying effects on the soil as well a threat to human livelihood. Consequently, vegetable yield samples from poultry droppings, decomposed household waste manure, NPK treatments and control from each replication were subjected to proximate analysis to determine the nutritional and antinutritional component as well as heavy metal concentration. Data collected was analyzed using SPSS software and Randomized complete Block Design means were compared. The result shows that the treatments do not devoid the concentrations of any nutritional components while the anti-nutritional analysis proved that NPK had higher oxalate content than control and organic treats. The concentration of lead and cadmium are within safe permissible level while the mercury level exceeded the FAO/WHO maximum permissible limit for the entire treatments depicts the need for urgent intervention to minimize mercury levels in soil and manure in order to mitigate its toxic effect. Thus, eco-agriculture should be widely accepted and promoted by the stakeholders for soil amendment, higher yield, strategies for sustainable environmental protection, food security, poverty eradication, attainment of sustainable development and healthy livelihood.

Keywords: Anti-nutritional, healthy livelihood, nutritional waste, organic waste.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1609
923 Soil Improvement using Cement Dust Mixture

Authors: Mohie Eldin Mohamed Afifiy Elmashad

Abstract:

Day by day technology increases and problems associated with this technology also increase. Several researches were carried out to investigate the deployment of such material safely in geotechnical engineering in particular and civil engineering in general. However, different types of waste material have such as cement duct, fly ash and slag been proven to be suitable in several applications. In this research cement dust mixed with different percentages of sand will be used in some civil engineering application as will be explained later in this paper throughout filed and laboratory test. The used mixer (waste material with sand) prove high performance, durability to environmental condition, low cost and high benefits. At higher cement dust ratio, small cement ratio is valuable for compressive strength and permeability. Also at small cement dust ratio higher cement ratio is valuable for compressive strength.

Keywords: cement dust, cement, soil improvement, permeability

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2902
922 The Effect of Dispersed MWCNTs Using SDBS Surfactant on Bacterial Growth

Authors: J.E. Park, G.R. Kim, D.J. Yoon, C.H. Sin, I.S. Park, T.S. Bea, M.H. Lee

Abstract:

Carbon nanotubes (CNTs) are attractive because of their excellent chemical durability mechanical strength and electrical properties. Therefore there is interest in CNTs for not only electrical and mechanical application, but also biological and medical application. In this study, the dispersion power of surfactant-treated multiwalled carbon nanotubes (MWCNTs) and their effect on the antibacterial activity were examined. Surfactant was used sodium dodecyl-benzenesulfonate (SDBS). UV-vis absorbance and transmission electron microscopy(TEM) were used to characterize the dispersion of MWCNTs in the aqueous phase, showing that the surfactant molecules had been adsorbed onto the MWCNTs surface. The surfactant-treated MWCNTs exhibited antimicrobial activities to streptococcus mutans. The optical density growth curves and viable cell number determined by the plating method suggested that the antimicrobial activity of surfactant-treated MWCNTs was both concentration and treatment time-dependent.

Keywords: MWCNT, SDBS, surfactant, antibacterial.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3016
921 Conservation Techniques for Soil Erosion Control in Tobacco-Based Farming System at Steep Land Areas of Progo Hulu Subwatershed, Central Java, Indonesia

Authors: Jaka Suyana, Komariah, Masateru Senge

Abstract:

This research was aimed at determining the impact of conservation techniques including bench terrace, stone terrace, mulching, grass strip and intercropping on soil erosion at tobacco-based farming system at Progo Hulu subwatershed, Central Java, Indonesia. Research was conducted from September 2007 to September 2009, located at Progo Hulu subwatershed, Central Java, Indonesia. Research site divided into 27 land units, and experimental fields were grouped based on the soil type and slope, ie: 30%, 45% and 70%, with the following treatments: 1) ST0= stone terrace (control); 2) ST1= stone terrace + Setaria spacelata grass strip on a 5 cm height dike at terrace lips + tobacco stem mulch with dose of 50% (7 ton/ ha); 3) ST2= stone terrace + Setaria spacelata grass strip on a 5 cm height dike at terrace lips + tobacco stem mulch with dose of 100% (14 ton/ ha); 4) ST3= stone terrace + tobacco and red bean intercropping + tobacco stem mulch with dose of 50% (7 ton/ ha). 5) BT0= bench terrace (control); 6) BT1= bench terrace + Setaria spacelata grass strip at terrace lips + tobacco stem mulch with dose of 50% (7 ton/ ha); 7) BT2= bench terrace + Setaria spacelata grass strip at terrace lips + tobacco stem mulch with dose of 100% (14 ton/ ha); 8) BT3= bench terrace + tobacco and red bean intercropping + tobacco stem mulch with dose of 50% (7 ton/ ha). The results showed that the actual erosion rates of research site were higher than that of tolerance erosion with mean value 89.08 ton/ha/year and 33.40 ton/ha/year, respectively. These resulted in 69% of total research site (5,119.15 ha) highly degraded. Conservation technique of ST2 was the most effective in suppressing soil erosion, by 42.87%, following with BT2 as much 30.63%. Others suppressed erosion only less than 21%.

Keywords: Steep land, subwatershed, conservation terrace, tolerance erosion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2149
920 Spatial Distribution and Risk Assessment of As, Hg, Co and Cr in Kaveh Industrial City, using Geostatistic and GIS

Authors: Abbas Hani

Abstract:

The concentrations of As, Hg, Co, Cr and Cd were tested for each soil sample, and their spatial patterns were analyzed by the semivariogram approach of geostatistics and geographical information system technology. Multivariate statistic approaches (principal component analysis and cluster analysis) were used to identify heavy metal sources and their spatial pattern. Principal component analysis coupled with correlation between heavy metals showed that primary inputs of As, Hg and Cd were due to anthropogenic while, Co, and Cr were associated with pedogenic factors. Ordinary kriging was carried out to map the spatial patters of heavy metals. The high pollution sources evaluated was related with usage of urban and industrial wastewater. The results of this study helpful for risk assessment of environmental pollution for decision making for industrial adjustment and remedy soil pollution.

Keywords: Geographic Information system, Geostatistics, Kaveh, Multivariate Statistical Analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1951
919 Optimization of Process Parameters Affecting Biogas Production from Organic Fraction of Municipal Solid Waste via Anaerobic Digestion

Authors: Sajeena Beevi. B, Jose P. P., G. Madhu

Abstract:

The aim of this study was to obtain the optimal conditions for biogas production from anaerobic digestion of organic fraction of municipal solid waste (OFMSW) using response surface methodology (RSM). The parameters studied were initial pH, substrate concentration and total organic carbon (TOC). The experimental results showed that the linear model terms of initial pH and substrate concentration and the quadratic model terms of the substrate concentration and TOC had significant individual effect (p < 0.05) on biogas yield. However, there was no interactive effect between these variables (p > 0.05). The highest level of biogas produced was 53.4 L/Kg VS at optimum pH, substrate concentration and total organic carbon of 6.5, 99gTS/L and 20.32 g/L respectively.

Keywords: Anaerobic Digestion, Biogas, Optimization, Response Surface Methodology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4748
918 Static Response of Homogeneous Clay Stratum to Imposed Structural Loads

Authors: Aaron Aboshio

Abstract:

Numerical study of the static response of homogeneous clay stratum considering a wide range of cohesion and subject to foundation loads is presented. The linear elastic–perfectly plastic constitutive relation with the von Mises yield criterion were utilised to develop a numerically cost effective finite element model for the soil while imposing a rigid body constrain to the foundation footing. From the analyses carried out, estimate of the bearing capacity factor, Nc as well as the ultimate load-carrying capacities of these soils, effect of cohesion on foundation settlements, stress fields and failure propagation were obtained. These are consistent with other findings in the literature and hence can be a useful guide in design of safe foundations in clay soils for buildings and other structure.

Keywords: Bearing capacity factors, finite element method, safe bearing pressure, structure-soil interaction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1981
917 Review of the Characteristics of Mahan Garden:One Type of Persian Gardens

Authors: Ladan Tajaddini

Abstract:

Iranians- imagination of heaven, which is the reward of a person-s good deeds during their life, has shown itself in pleasant and green gardens where earthly gardens were made as representations of paradise. Iranians are also quite interested in making their earthly gardens and plantations around their buildings. With Iran-s hot and dry climate with a lack of sufficient water for plantation coverage, it becomes noticeable how important it is to Iranians- art in making gardens. This study, with regard to examples, documents and library studies, investigates the characteristics of Persian gardens. The result shows that elements such as soil, water, plants and layout have been used in forming a unique style of Persian gardens. Bagh-e Shah Zadeh Mahan (Mahan prince garden) is a typical example and has been carefully studied. In this paper I try to investigate and evaluate the characteristics of a Persian garden by means of a descriptive approach.

Keywords: environmental planning, Persian garden, landscape, shah zadeh garden, soil and water, gardening.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2907
916 Preparation of Carbon Nanofiber Reinforced HDPE Using Dialkylimidazolium as a Dispersing Agent: Effect on Thermal and Rheological Properties

Authors: J. Samuel, S. Al-Enezi, A. Al-Banna

Abstract:

High-density polyethylene reinforced with carbon nanofibers (HDPE/CNF) have been prepared via melt processing using dialkylimidazolium tetrafluoroborate (ionic liquid) as a dispersion agent. The prepared samples were characterized by thermogravimetric (TGA) and differential scanning calorimetric (DSC) analyses. The samples blended with imidazolium ionic liquid exhibit higher thermal stability. DSC analysis showed clear miscibility of ionic liquid in the HDPE matrix and showed single endothermic peak. The melt rheological analysis of HDPE/CNF composites was performed using an oscillatory rheometer. The influence of CNF and ionic liquid concentration (ranging from 0, 0.5, and 1 wt%) on the viscoelastic parameters was investigated at 200 °C with an angular frequency range of 0.1 to 100 rad/s. The rheological analysis shows the shear-thinning behavior for the composites. An improvement in the viscoelastic properties was observed as the nanofiber concentration increases. The progress in the modulus values was attributed to the structural rigidity imparted by the high aspect ratio CNF. The modulus values and complex viscosity of the composites increased significantly at low frequencies. Composites blended with ionic liquid exhibit slightly lower values of complex viscosity and modulus over the corresponding HDPE/CNF compositions. Therefore, reduction in melt viscosity is an additional benefit for polymer composite processing as a result of wetting effect by polymer-ionic liquid combinations.

Keywords: HDPE, carbon nanofiber, ionic liquid, complex viscosity, modulus.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 731