Search results for: weld parameters
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3772

Search results for: weld parameters

3082 Mixed Convection with Radiation Effect over a Nonlinearly Stretching Sheet

Authors: Kai-Long Hsiao

Abstract:

In this study, an analysis has been performed for free convection with radiation effect over a thermal forming nonlinearly stretching sheet. Parameters n, k0, Pr, G represent the dominance of the nonlinearly effect, radiation effect, heat transfer and free convection effects which have been presented in governing equations, respectively. The similarity transformation and the finite-difference methods have been used to analyze the present problem. From the results, we find that the effects of parameters n, k0, Pr, Ec and G to the nonlinearly stretching sheet. The increase of Prandtl number Pr, free convection parameter G or radiation parameter k0 resulting in the increase of heat transfer effects, but increase of the viscous dissipation number Ec will decrease of heat transfer effect.

Keywords: Nonlinearly stretching sheet, Free convection, Finite-difference, Radiation effect.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1757
3081 ROC Analysis of PVC Detection Algorithm using ECG and Vector-ECG Charateristics

Authors: J. S. Nah, A. Y. Jeon, J. H. Ro, G. R. Jeon

Abstract:

ECG analysis method was developed using ROC analysis of PVC detecting algorithm. ECG signal of MIT-BIH arrhythmia database was analyzed by MATLAB. First of all, the baseline was removed by median filter to preprocess the ECG signal. R peaks were detected for ECG analysis method, and normal VCG was extracted for VCG analysis method. Four PVC detecting algorithm was analyzed by ROC curve, which parameters are maximum amplitude of QRS complex, width of QRS complex, r-r interval and geometric mean of VCG. To set cut-off value of parameters, ROC curve was estimated by true-positive rate (sensitivity) and false-positive rate. sensitivity and false negative rate (specificity) of ROC curve calculated, and ECG was analyzed using cut-off value which was estimated from ROC curve. As a result, PVC detecting algorithm of VCG geometric mean have high availability, and PVC could be detected more accurately with amplitude and width of QRS complex.

Keywords: Vectorcardiogram (VCG), Premature Ventricular contraction (PVC), ROC (receiver operating characteristic) curve, ECG

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2945
3080 Application Quality Function Deployment (QFD) Tool in Design of Aero Pumps Based on System Engineering

Authors: Z. Soleymani, M. Amirzadeh

Abstract:

Quality Function Deployment (QFD) was developed in 1960 in Japan and introduced in 1983 in America and Europe. The paper presents a real application of this technique in a way that the method of applying QFD in design and production aero fuel pumps has been considered. While designing a product and in order to apply system engineering process, the first step is identification customer needs then its transition to engineering parameters. Since each change in deign after production process leads to extra human costs and also increase in products quality risk, QFD can make benefits in sale by meeting customer expectations. Since the needs identified as well, the use of QFD tool can lead to increase in communications and less deviation in design and production phases, finally it leads to produce the products with defined technical attributes.

Keywords: Customer voice, engineering parameters, QFD, gear pump.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1720
3079 Impact of Obesity on Fertility in a Population of Women in the Wilaya of Batna

Authors: A. Chennaf, M. Yahia, W. Bouafia, S. Benbia, D. Khellaf

Abstract:

Our study was designed to highlight changes in  certain biochemical parameters (CH, TG, HDL, GOT, GPT, LDL and  CRP), obese women infertile fertile witnesses and research potential  pathophysiological link between obesity and infertility in this  population of women. This practical work was focused on a  population of 24 obese women infertile, compared to controls,  subjects without any pathology causing disruption of parameters to  be studied to determine the contribution of obesity in the etiology of  infertility. The assay results revealed a highly significant difference  between the two groups in serum CH, TG, HDL, TGO and TGP (P  <0.0001) and in the rate of LDL (p = 0.0017) and CRP (p = 0.02).  The present study indicates that obesity is associated with infertility,  but no direct pathophysiological link between obesity and infertility  has been determined. Further in-depth studies are needed to  determine the exact mechanism by which overweight leads to female  infertility.

 

Keywords: Obesity, fertility, infertility, biochemical, women.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2395
3078 A Comparative Study of Rigid and Modified Simplex Methods for Optimal Parameter Settings of ACO for Noisy Non-Linear Surfaces

Authors: Seksan Chunothaisawat, Pongchanun Luangpaiboon

Abstract:

There are two common types of operational research techniques, optimisation and metaheuristic methods. The latter may be defined as a sequential process that intelligently performs the exploration and exploitation adopted by natural intelligence and strong inspiration to form several iterative searches. An aim is to effectively determine near optimal solutions in a solution space. In this work, a type of metaheuristics called Ant Colonies Optimisation, ACO, inspired by a foraging behaviour of ants was adapted to find optimal solutions of eight non-linear continuous mathematical models. Under a consideration of a solution space in a specified region on each model, sub-solutions may contain global or multiple local optimum. Moreover, the algorithm has several common parameters; number of ants, moves, and iterations, which act as the algorithm-s driver. A series of computational experiments for initialising parameters were conducted through methods of Rigid Simplex, RS, and Modified Simplex, MSM. Experimental results were analysed in terms of the best so far solutions, mean and standard deviation. Finally, they stated a recommendation of proper level settings of ACO parameters for all eight functions. These parameter settings can be applied as a guideline for future uses of ACO. This is to promote an ease of use of ACO in real industrial processes. It was found that the results obtained from MSM were pretty similar to those gained from RS. However, if these results with noise standard deviations of 1 and 3 are compared, MSM will reach optimal solutions more efficiently than RS, in terms of speed of convergence.

Keywords: Ant colony optimisation, metaheuristics, modified simplex, non-linear, rigid simplex.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1624
3077 Noise Performance Optimization of a Fast Wavelength Calibration Algorithm for OSAs

Authors: Thomas Fuhrmann

Abstract:

A new fast correlation algorithm for calibrating the wavelength of Optical Spectrum Analyzers (OSAs) was introduced in [1]. The minima of acetylene gas spectra were measured and correlated with saved theoretical data [2]. So it is possible to find the correct wavelength calibration data using a noisy reference spectrum. First tests showed good algorithmic performance for gas line spectra with high noise. In this article extensive performance tests were made to validate the noise resistance of this algorithm. The filter and correlation parameters of the algorithm were optimized for improved noise performance. With these parameters the performance of this wavelength calibration was simulated to predict the resulting wavelength error in real OSA systems. Long term simulations were made to evaluate the performance of the algorithm over the lifetime of a real OSA.

Keywords: correlation, gas reference, optical spectrum analyzer, wavelength calibration

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1272
3076 A Performance Study of Fixed, Single-Axis and Dual-Axis Photovoltaic Systems in Kuwait

Authors: A. Al-Rashidi, A. El-Hamalawi

Abstract:

In this paper, a performance study was conducted to investigate single and dual-axis PV systems to generate electricity in five different sites in Kuwait. Relevant data were obtained by using two sources for validation purposes. A commercial software, PVsyst, was used to analyse the data, such as metrological data and other input parameters, and compute the performance parameters such as capacity factor (CF) and final yield (YF). The results indicated that single and dual-axis PV systems would be very beneficial to electricity generation in Kuwait as an alternative source to conventional power plants, especially with the increased demand over time. The ranges were also found to be competitive in comparison to leading countries using similar systems. A significant increase in CF and YF values around 24% and 28.8% was achieved related to the use of single and dual systems, respectively.

Keywords: Single-axis and dual-axis photovoltaic systems, capacity factor, final yield, renewable energy, Kuwait.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1556
3075 Design of an M-Channel Cosine Modulated Filter Bank by New Cosh Window Based FIR Filters

Authors: Jyotsna Ogale, Alok Jain

Abstract:

In this paper newly reported Cosh window function is used in the design of prototype filter for M-channel Near Perfect Reconstruction (NPR) Cosine Modulated Filter Bank (CMFB). Local search optimization algorithm is used for minimization of distortion parameters by optimizing the filter coefficients of prototype filter. Design examples are presented and comparison has been made with Kaiser window based filterbank design of recently reported work. The result shows that the proposed design approach provides lower distortion parameters and improved far-end suppression than the Kaiser window based design of recent reported work.

Keywords: Window function, Cosine modulated filterbank, Local search optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2600
3074 Empirical Mode Decomposition with Wavelet Transform Based Analytic Signal for Power Quality Assessment

Authors: Sudipta Majumdar, Amarendra Kumar Mishra

Abstract:

This paper proposes empirical mode decomposition (EMD) together with wavelet transform (WT) based analytic signal for power quality (PQ) events assessment. EMD decomposes the complex signals into several intrinsic mode functions (IMF). As the PQ events are non stationary, instantaneous parameters have been calculated from these IMFs using analytic signal obtained form WT. We obtained three parameters from IMFs and then used KNN classifier for classification of PQ disturbance. We compared the classification of proposed method for PQ events by obtaining the features using Hilbert transform (HT) method. The classification efficiency using WT based analytic method is 97.5% and using HT based analytic signal is 95.5%.

Keywords: Empirical mode decomposition, Hilbert transform, wavelet transform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1291
3073 Surface Roughness Prediction Model for Grinding of Composite Laminate Using Factorial Design

Authors: P. Chockalingam, C. K. Kok, T. R. Vijayaram

Abstract:

Glass fiber reinforced polymer (GFRP) laminates have been widely used because of their unique mechanical and physical properties such as high specific strength, stiffness and corrosive resistance. Accordingly, the demand for precise grinding of composites has been increasing enormously. Grinding is the one of the obligatory methods for fabricating products with composite materials and it is usually the final operation in the assembly of structural laminates. In this experimental study, an attempt has been made to develop an empirical model to predict the surface roughness of ground GFRP composite laminate with respect to the influencing grinding parameters by factorial design approach of design of experiments (DOE). The significance of grinding parameters and their three factor interaction effects on grinding of GFRP composite have been analyzed in detail. An empirical equation has been developed to attain minimum surface roughness in GFRP laminate grinding.

Keywords: GFRP Laminates, Grinding, Surface Roughness, Factorial Design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2452
3072 Evaluation of Shear Strength Parameters of Amended Loess through Using Common Admixtures in Gorgan, Iran

Authors: Seyed Erfan Hosseini, Mohammad K. Alizadeh, Amir Mesbah

Abstract:

Non-saturated soils that while saturation greatly decrease their volume, have sudden settlement due to increasing humidity, fracture and structural crack are called loess soils. Whereas importance of civil projects including: dams, canals and constructions bearing this type of soil and thereof problems, it is required for carrying out more research and study in relation to loess soils. This research studies shear strength parameters by using grading test, Atterberg limit, compression, direct shear and consolidation and then effect of using cement and lime additives on stability of loess soils is studied. In related tests, lime and cement are separately added to mixed ratios under different percentages of soil and for different times the stabilized samples are processed and effect of aforesaid additives on shear strength parameters of soil is studied. Results show that upon passing time the effect of additives and collapsible potential is greatly decreased and upon increasing percentage of cement and lime the maximum dry density is decreased; however, optimum humidity is increased. In addition, liquid limit and plastic index is decreased; however, plastic index limit is increased. It is to be noted that results of direct shear test reveal increasing shear strength of soil due to increasing cohesion parameter and soil friction angle.

Keywords: Loess Soils, Shear Strength, Cement, Lime.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2005
3071 Modeling of Surface Roughness in Vibration Cutting by Artificial Neural Network

Authors: H. Soleimanimehr, M. J. Nategh , S. Amini

Abstract:

Development of artificial neural network (ANN) for prediction of aluminum workpieces' surface roughness in ultrasonicvibration assisted turning (UAT) has been the subject of the present study. Tool wear as the main cause of surface roughness was also investigated. ANN was trained through experimental data obtained on the basis of full factorial design of experiments. Various influential machining parameters were taken into consideration. It was illustrated that a multilayer perceptron neural network could efficiently model the surface roughness as the response of the network, with an error less than ten percent. The performance of the trained network was verified by further experiments. The results of UAT were compared with the results of conventional turning experiments carried out with similar machining parameters except for the vibration amplitude whence considerable reduction was observed in the built-up edge and the surface roughness.

Keywords: Aluminum, Artificial Neural Network (ANN), BuiltupEdge, Surface Roughness, Tool Wear, Ultrasonic VibrationAssisted Turning (UAT).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1755
3070 A Bathtub Curve from Nonparametric Model

Authors: Eduardo C. Guardia, Jose W. M. Lima, Afonso H. M. Santos

Abstract:

This paper presents a nonparametric method to obtain the hazard rate “Bathtub curve” for power system components. The model is a mixture of the three known phases of a component life, the decreasing failure rate (DFR), the constant failure rate (CFR) and the increasing failure rate (IFR) represented by three parametric Weibull models. The parameters are obtained from a simultaneous fitting process of the model to the Kernel nonparametric hazard rate curve. From the Weibull parameters and failure rate curves the useful lifetime and the characteristic lifetime were defined. To demonstrate the model the historic time-to-failure of distribution transformers were used as an example. The resulted “Bathtub curve” shows the failure rate for the equipment lifetime which can be applied in economic and replacement decision models.

Keywords: Bathtub curve, failure analysis, lifetime estimation, parameter estimation, Weibull distribution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2235
3069 Experimental Study on Ultrasonic Shot Peening Forming and Surface Properties of AALY12

Authors: Shi-hong Lu, Chao-xun Liu, Yi-feng Zhu

Abstract:

Ultrasonic shot peening (USP) on AALY12 sheet was studied. Several parameters (arc heights, surface roughness, surface topography and micro hardness) with different USP process parameters were measured. The research proposes that radius of curvature of shot peened sheet increases with time and electric current decreasing, while increases with pin diameter increasing, and radius of curvature reaches a saturation level after a specific processing time and electric current. An empirical model of the relationship between radius of curvature and pin diameter, electric current, time was also obtained. The research shows that the increment of surface and vertical micro hardness of material is more obvious with longer time and higher value of electric current, which can be up to 20% and 28% respectively.

Keywords: USP forming, surface properties, radius of curvature, residual stress.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1913
3068 A Large Ion Collider Experiment (ALICE) Diffractive Detector Control System for RUN-II at the Large Hadron Collider

Authors: J. C. Cabanillas-Noris, M. I. Martínez-Hernández, I. León-Monzón

Abstract:

The selection of diffractive events in the ALICE experiment during the first data taking period (RUN-I) of the Large Hadron Collider (LHC) was limited by the range over which rapidity gaps occur. It would be possible to achieve better measurements by expanding the range in which the production of particles can be detected. For this purpose, the ALICE Diffractive (AD0) detector has been installed and commissioned for the second phase (RUN-II). Any new detector should be able to take the data synchronously with all other detectors and be operated through the ALICE central systems. One of the key elements that must be developed for the AD0 detector is the Detector Control System (DCS). The DCS must be designed to operate safely and correctly this detector. Furthermore, the DCS must also provide optimum operating conditions for the acquisition and storage of physics data and ensure these are of the highest quality. The operation of AD0 implies the configuration of about 200 parameters, from electronics settings and power supply levels to the archiving of operating conditions data and the generation of safety alerts. It also includes the automation of procedures to get the AD0 detector ready for taking data in the appropriate conditions for the different run types in ALICE. The performance of AD0 detector depends on a certain number of parameters such as the nominal voltages for each photomultiplier tube (PMT), their threshold levels to accept or reject the incoming pulses, the definition of triggers, etc. All these parameters define the efficiency of AD0 and they have to be monitored and controlled through AD0 DCS. Finally, AD0 DCS provides the operator with multiple interfaces to execute these tasks. They are realized as operating panels and scripts running in the background. These features are implemented on a SCADA software platform as a distributed control system which integrates to the global control system of the ALICE experiment.

Keywords: AD0, ALICE, DCS, LHC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1398
3067 Multiparametric Optimization of Water Treatment Process for Thermal Power Plants

Authors: B. Mukanova, N. Glazyrina, S. Glazyrin

Abstract:

The formulated problem of optimization of the technological process of water treatment for thermal power plants is considered in this article. The problem is of multiparametric nature. To optimize the process, namely, reduce the amount of waste water, a new technology was developed to reuse such water. A mathematical model of the technology of wastewater reuse was developed. Optimization parameters were determined. The model consists of a material balance equation, an equation describing the kinetics of ion exchange for the non-equilibrium case and an equation for the ion exchange isotherm. The material balance equation includes a nonlinear term that depends on the kinetics of ion exchange. A direct problem of calculating the impurity concentration at the outlet of the water treatment plant was numerically solved. The direct problem was approximated by an implicit point-to-point computation difference scheme. The inverse problem was formulated as relates to determination of the parameters of the mathematical model of the water treatment plant operating in non-equilibrium conditions. The formulated inverse problem was solved. Following the results of calculation the time of start of the filter regeneration process was determined, as well as the period of regeneration process and the amount of regeneration and wash water. Multi-parameter optimization of water treatment process for thermal power plants allowed decreasing the amount of wastewater by 15%.

Keywords: Direct problem, multiparametric optimization, optimization parameters, water treatment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2137
3066 Evaluation of Water Quality of the Beshar River

Authors: Fardin Boustani, Mohammah Hosein Hojati, Masoud Hashemi

Abstract:

The Beshar River is one aquatic ecosystem, which is located next to the city of Yasuj in southern Iran. The Beshar river has been contaminated by industrial factories such as effluent of sugar factory, agricultural and other activities in this region such as, Imam Sajjad hospital, drainage from agricultural farms, Yasuj urban surface runoff and effluent of wastewater treatment plants ,specially Yasuj waste water treatment plant. In order to evaluate the effects of these pollutants on the quality of the Beshar river, five monitoring stations were selected along its course. The first station is located upstream of Yasuj near the Dehnow village; stations 2 to 4 are located east, south and west of city; and the 5th station is located downstream of Yasuj. Several water quality parameters were sampled. These include pH, dissolved oxygen, biological oxygen demand (BOD), temperature, conductivity, turbidity, total dissolved solids and discharge or flow measurements. Water samples from the five stations were collected and analyzed to determine the following physicochemical parameters: EC, pH, T.D.S, T.H, No2, DO, BOD5, COD during 2008 to 2010. The study shows that the BOD5 value of station 1 is at a minimum (1.7 ppm) and increases downstream from stations 2 to 4 to a maximum (11.6 ppm), and then decreases at station 5. The DO values of station 1 is a maximum (8.45 ppm), decreases downstream to stations 2 - 4 which are at a minimum (3.1 ppm), before increasing at station 5. The amount of BOD and TDS are highest at the 4th station and the amount of DO is lowest at this station, marking the 4th station as more highly polluted than the other stations .This study shows average amount of the water quality parameters in first year of sampling (2008) have had a better quality relation to third year in 2010 because of recent drought in this region and pollutant increasing .As the Beshar river path after 5th station goes through the mountain area with more slope and flow velocity ,so the physicochemical parameters improve at the 5th station due to pollutant degradation and dilution. Finally the point and nonpoint pollutant sources of Beshar river were determined and compared to the monitoring results.

Keywords: Beshar river, physicochemical parameter, waterpollution, water quality, Yasuj

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1650
3065 Effect of Geometrical Parameters on Natural Frequencies of FGM Cylindrical shell with Holes Under Various Boundary Conditions

Authors: Mostafa Ghayour, Mohammad Sadegh Golabi

Abstract:

In the recent years, functionally gradient materials (FGMs) have gained considerable attention in the high temperature environment applications. In this paper, free vibration of thin functionally graded cylindrical shell with hole composed of stainless steel and zirconia is studied. The mechanical properties vary smoothly and continuously from one surface to the other according to a volume fraction power-law distribution. The Influence of shell geometrical parameters, variations of volume fractions and boundary conditions on natural frequency is considered. The equations of motion are based on strains-displacement relations from Love-s shell theory and Rayleigh method. The results have been obtained for natural frequencies of cylindrical shell with holes for different shape, number and location in this paper.

Keywords: Functionally gradient material, Vibration, various boundary conditions, cylindrical shells.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1809
3064 Multi-Criteria Based Robust Markowitz Model under Box Uncertainty

Authors: Pulak Swain, A. K. Ojha

Abstract:

Portfolio optimization is based on dealing with the problems of efficient asset allocation. Risk and Expected return are two conflicting criteria in such problems, where the investor prefers the return to be high and the risk to be low. Using multi-objective approach we can solve those type of problems. However the information which we have for the input parameters are generally ambiguous and the input values can fluctuate around some nominal values. We can not ignore the uncertainty in input values, as they can affect the asset allocation drastically. So we use Robust Optimization approach to the problems where the input parameters comes under box uncertainty. In this paper, we solve the multi criteria robust problem with the help of  E- constraint method.

Keywords: Portfolio optimization, multi-objective optimization, E-constraint method, box uncertainty, robust optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 622
3063 A Neural Approach for the Offline Recognition of the Arabic Handwritten Words of the Algerian Departments

Authors: Salim Ouchtati, Jean Sequeira, Mouldi Bedda

Abstract:

In the context of the handwriting recognition, we propose an off line system for the recognition of the Arabic handwritten words of the Algerian departments. The study is based mainly on the evaluation of neural network performances, trained with the gradient back propagation algorithm. The used parameters to form the input vector of the neural network are extracted on the binary images of the handwritten word by several methods. The Distribution parameters, the centered moments of the different projections of the different segments, the centered moments of the word image coding according to the directions of Freeman, and the Barr features applied binary image of the word and on its different segments. The classification is achieved by a multi layers perceptron. A detailed experiment is carried and satisfactory recognition results are reported.

Keywords: Handwritten word recognition, neural networks, image processing, pattern recognition, features extraction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1902
3062 Fuzzy Rules Emulated Network Adaptive Controller with Unfixed Learning Rate for a Class of Unknown Discrete-time Nonlinear Systems

Authors: Chidentree Treesatayapun

Abstract:

A direct adaptive controller for a class of unknown nonlinear discrete-time systems is presented in this article. The proposed controller is constructed by fuzzy rules emulated network (FREN). With its simple structure, the human knowledge about the plant is transferred to be if-then rules for setting the network. These adjustable parameters inside FREN are tuned by the learning mechanism with time varying step size or learning rate. The variation of learning rate is introduced by main theorem to improve the system performance and stabilization. Furthermore, the boundary of adjustable parameters is guaranteed through the on-line learning and membership functions properties. The validation of the theoretical findings is represented by some illustrated examples.

Keywords: Neuro-Fuzzy, learning algorithm, nonlinear discrete time.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1425
3061 Optimal Design for SARMA(P,Q)L Process of EWMA Control Chart

Authors: Y. Areepong

Abstract:

The main goal of this paper is to study Statistical Process Control (SPC) with Exponentially Weighted Moving Average (EWMA) control chart when observations are serially-correlated. The characteristic of control chart is Average Run Length (ARL) which is the average number of samples taken before an action signal is given. Ideally, an acceptable ARL of in-control process should be enough large, so-called (ARL0). Otherwise it should be small when the process is out-of-control, so-called Average of Delay Time (ARL1) or a mean of true alarm. We find explicit formulas of ARL for EWMA control chart for Seasonal Autoregressive and Moving Average processes (SARMA) with Exponential white noise. The results of ARL obtained from explicit formula and Integral equation are in good agreement. In particular, this formulas for evaluating (ARL0) and (ARL1) be able to get a set of optimal parameters which depend on smoothing parameter (λ) and width of control limit (H) for designing EWMA chart with minimum of (ARL1).

Keywords: Average Run Length1, Optimal parameters, Exponentially Weighted Moving Average (EWMA) control chart.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1984
3060 Identify Features and Parameters to Devise an Accurate Intrusion Detection System Using Artificial Neural Network

Authors: Saman M. Abdulla, Najla B. Al-Dabagh, Omar Zakaria

Abstract:

The aim of this article is to explain how features of attacks could be extracted from the packets. It also explains how vectors could be built and then applied to the input of any analysis stage. For analyzing, the work deploys the Feedforward-Back propagation neural network to act as misuse intrusion detection system. It uses ten types if attacks as example for training and testing the neural network. It explains how the packets are analyzed to extract features. The work shows how selecting the right features, building correct vectors and how correct identification of the training methods with nodes- number in hidden layer of any neural network affecting the accuracy of system. In addition, the work shows how to get values of optimal weights and use them to initialize the Artificial Neural Network.

Keywords: Artificial Neural Network, Attack Features, MisuseIntrusion Detection System, Training Parameters.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2282
3059 Erosion in Abrasive Jet Nozzles: A Comprehensive Study

Authors: D. V. Sreekanth, M. Sreenivasa Rao

Abstract:

Abrasive jet machining is one of the promising non-traditional machining processes which uses mechanical energy (pressure and velocity) for machining various materials. The process parameters that influence the metal removal rate are kerfs, surface finish, depth of cut, air pressure, and distance between nozzle and work piece, nozzle diameter, abrasive type, abrasive shape, and mass flow rate of abrasive particles. The abrasive particles coming out with high pressure not only hits work surface but also passes through the nozzle resulting in erosion. This paper focuses mainly on the effect of different parameters on the erosion of nozzle in Abrasive jet machining. Three different types of nozzles made of sapphire, tungsten carbide, and high carbon high chromium steel (HCHCS) are used for machining glass and the erosion of these nozzles are calculated. The results are shown in tabular form and graphical representation.

Keywords: AJM, nozzle, sapphire, tungsten carbide, chrome steel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1135
3058 Rheological and Computational Analysis of Crude Oil Transportation

Authors: Praveen Kumar, Satish Kumar, Jashanpreet Singh

Abstract:

Transportation of unrefined crude oil from the production unit to a refinery or large storage area by a pipeline is difficult due to the different properties of crude in various areas. Thus, the design of a crude oil pipeline is a very complex and time consuming process, when considering all the various parameters. There were three very important parameters that play a significant role in the transportation and processing pipeline design; these are: viscosity profile, temperature profile and the velocity profile of waxy crude oil through the crude oil pipeline. Knowledge of the Rheological computational technique is required for better understanding the flow behavior and predicting the flow profile in a crude oil pipeline. From these profile parameters, the material and the emulsion that is best suited for crude oil transportation can be predicted. Rheological computational fluid dynamic technique is a fast method used for designing flow profile in a crude oil pipeline with the help of computational fluid dynamics and rheological modeling. With this technique, the effect of fluid properties including shear rate range with temperature variation, degree of viscosity, elastic modulus and viscous modulus was evaluated under different conditions in a transport pipeline. In this paper, two crude oil samples was used, as well as a prepared emulsion with natural and synthetic additives, at different concentrations ranging from 1,000 ppm to 3,000 ppm. The rheological properties was then evaluated at a temperature range of 25 to 60 °C and which additive was best suited for transportation of crude oil is determined. Commercial computational fluid dynamics (CFD) has been used to generate the flow, velocity and viscosity profile of the emulsions for flow behavior analysis in crude oil transportation pipeline. This rheological CFD design can be further applied in developing designs of pipeline in the future.

Keywords: Natural surfactant, crude oil, rheology, CFD, viscosity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1676
3057 A Study of Gas Metal Arc Welding Affecting Mechanical Properties of Austenitic Stainless Steel AISI 304

Authors: Sittichai K., Santirat N., Sompong., P

Abstract:

The objective of this research was to study influence parameters affecting to mechanical property of austenitic stainless steel grade 304 (AISI 304) with Gas Metal Arc Welding (GMAW). The research was applying factorial design experiment, which have following interested parameters: welding current at 80, 90, and 100 Amps, welding speeds at 250, 300, and 350 mm/min, and shield gas of 75% Ar + 25% CO2, 70% Ar + 25% CO2 + 5% O2 and 69.5% Ar + 25% CO2 + 5% O2 + 0.5% He gas. The study was done in following aspects: ultimate tensile strength and elongation. A research study of ultimate tensile strength found that main factor effect, which had the highest strength to AISI 304 welding was shield gas of 70% Ar + 25% CO2 + 5% O2 at average of 954.81 N/mm2. Result of the highest elongation was showed significantly different at interaction effect between shield gas of 69.5%Ar+25%CO2+5%O2+.5%He and welding speed at 250 mm/min at 47.94%.

Keywords: Austenitic Stainless Steel AISI 304/ Mechanical Property/ Welding Gas Shield/ Gas Shield

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1836
3056 Effect of Mesh Size on the Supersonic Viscous Flow Parameters around an Axisymmetric Blunt Body

Authors: Rabah Haoui

Abstract:

The aim of this work is to analyze a viscous flow around the axisymmetric blunt body taken into account the mesh size both in the free stream and into the boundary layer. The resolution of the Navier-Stokes equations is realized by using the finite volume method to determine the flow parameters and detached shock position. The numerical technique uses the Flux Vector Splitting method of Van Leer. Here, adequate time stepping parameter, CFL coefficient and mesh size level are selected to ensure numerical convergence. The effect of the mesh size is significant on the shear stress and velocity profile. The best solution is obtained with using a very fine grid. This study enabled us to confirm that the determination of boundary layer thickness can be obtained only if the size of the mesh is lower than a certain value limits given by our calculations.

Keywords: Supersonic flow, viscous flow, finite volume, blunt body.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2052
3055 Performance and Emission Study of Linseed Oilas a Fuel for CI Engine

Authors: Ashutosh Kumar Rai, Naveen Kumar, Bhupendra Singh Chauhan

Abstract:

Increased energy demand and the concern about environment friendly technology, renewable bio-fuels are better alternative to petroleum products. In the present study linseed oil was used as alternative source for diesel engine fuel and the results were compared with baseline data of neat diesel. Performance parameters such as brake thermal efficiency (BTE) and brake specific fuel consumption (BSFC) and emissions parameters such as CO, unburned hydro carbon (UBHC), NOx, CO2 and exhaust temperature were compared. BTE of the engine was lower and BSFC was higher when the engine was fueled with Linseed oil compared to diesel fuel. Emission characteristics are better than diesel fuel. NOx formation by using linseed oil during the experiment was lower than diesel fuel. Linseed oil is non edible oil, so it can be used as an extender of diesel fuel energy source for small and medium energy needs.

Keywords: Bio-fuel, exhaust emission, linseed oil, triglyceride.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3852
3054 An Assessment of Water Pollution of the Beshar River Aquatic Ecosystems

Authors: Amir Eghbal Khajeh Rahimi, Fardin Boustani, Omid Tabiee, Masoud Hashemi

Abstract:

The Beshar River is one of the most important aquatic ecosystems in the upstream of the Karun watershed in south of Iran which is affected by point and non point pollutant sources . This study was done in order to evaluate the effects of pollutants activities on the water quality of the Beshar river and its aquatic ecosystems. This river is approximately 190 km in length and situated at the geographical positions of 51° 20´ to 51° 48´ E and 30° 18´ to 30° 52´ N it is one of the most important aquatic ecosystems of Kohkiloye and Boyerahmad province in south-west Iran. In this research project, five study stations were selected to examine water pollution in the Beshar River systems. Human activity is now one of the most important factors affecting on hydrology and water quality of the Beshar river. Humans use large amounts of resources to sustain various standards of living, although measures of sustainability are highly variable depending on how sustainability is defined. The Beshar river ecosystems are particularly sensitive and vulnerable to human activities. Therefore, to determine the impact of human activities on the Beshar River, the most important water quality parameters such as pH, dissolve oxygen (DO), Biological Oxygen Demand (BOD5), Total Dissolve Solids (TDS), Nitrates (NO3-N) and Phosphates (PO4) were estimated at the five stations. As the results show, the most important pollution index parameters such as BOD5, NO3 and PO4 increase and DO and pH decrease according to human activities (P<0.05). However, due to pollutant degradation and dilution, pollution index parameters improve downstream sampling stations.

Keywords: Human activities, Water pollution, Beshar River, Iran.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1920
3053 Utilizing Taguchi Experimental Design for Optimizing Effective Parameters in Tire Vulcanization

Authors: Ipak Torkpour

Abstract:

In order to convert natural rubber or related polymers to material with varying physical properties such as elastic modulus or durability, a chemical process named sulfur vulcanization is needed. This can be either done by heating sulfur or sulfur-containing compounds. The main goal of this process is to produce untreated natural rubber latex that can be the main source of manufacturing for several rubber producers. Temperature, pressure, and time are considered as three crucial factors in the tire vulcanization process. The present study is an attempt to optimize these crucial parameters, with the aim of achieving maximum tire modulus using Taguchi experimental design. The results revealed that the optimal parameter values are as follows: a temperature of 170 °C, a pressure of 110 bar, and a time duration of 230 seconds. Under these optimized conditions, the obtained tire modulus reached 8.8 kgf.

Keywords: Rubber vulcanization, experimental design, Taguchi, polymers.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 133