Search results for: solar array vibration damping.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1420

Search results for: solar array vibration damping.

730 Active Vibration Control of Passenger Seat with HFPIDCR Controlled Suspension Alternatives

Authors: Devdutt, M. L. Aggarwal

Abstract:

In this paper, passenger ride comfort issues are studied taking active quarter car model with three degrees of freedom. A hybrid fuzzy – PID controller with coupled rules (HFPIDCR) is designed for vibration control of passenger seat. Three different control strategies are considered. In first case, main suspension is controlled. In second case, passenger seat suspension is controlled. In third case, both main suspension and passenger seat suspensions are controlled. Passenger seat acceleration and displacement results are obtained using bump and sinusoidal type road disturbances. Finally, obtained simulation results of designed uncontrolled and controlled quarter car models are compared and discussed to select best control strategy for achieving high level of passenger ride comfort.

Keywords: Active suspension system, HFPIDCR controller, passenger ride comfort, quarter car model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1306
729 Rock Thickness Measurement by Using Self-Excited Acoustical System

Authors: JanuszKwaśniewski, IreneuszDominik, KrzysztofLalik

Abstract:

The knowledge about rock layers thickness,especially above drilled mining pavements is crucial for workers safety. The measuring systems used nowadays are generally imperfect and there is a strong demand for improvement. The application of a new type of a measurement system called Self-excited Acoustical System is presentedin the paper. The system was applied until now to monitor stress changes in metal and concrete constructions. The change in measurement methodology resulted in possibility of measuring the thickness of the rocks above the tunnels as well as thickness of a singular rocklayer. The idea is to find two resonance frequencies of the self-exited system,which consists of a vibration exciter and vibration receiver placed at a distance, which are coupled with a proper power amplifier, and which operate in a closed loop with a positive feedback. The resonance with the higher amplitude determines thickness of the whole rock, whereas the lower amplitude resonance indicates thickness of a singular layer. The results of the laboratory tests conducted on a group of different rock materials are also presented.

Keywords: Autooscillator, non-destructive testing, rock thickness measurement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2079
728 Experimental Analysis and Numerical Simulation of Smart Sandwich Beams Behavior in Honeycomb Magnetorheological Elastomer

Authors: A. Khebli, S. Aguib, Y. Kateb, L. Guenfoud, N. Chikh, M. Tourab, T. Djedid, W. Dilmi, A. Hadidi, H. Meglouli

Abstract:

Composite structures based on magnetorheological elastomers (MREs) are widely used in many industrial sectors, such as automotive, naval, railway, aeronautical, aerospace, and building industries because of their adjustable mechanical properties by an external stimulus. In this work, experimental tests and numerical simulations carried out have shown that the use of these new structures, developed from honeycomb core, and MRE with aluminum skins, make it possible to improve particularly the overall rigidity and to reduce the vibration amplitudes. The results found showed that these hybrid structures have a very good mechanical resistance due mainly to the honeycomb core, and a very good shock absorber due mainly to the core of the MRE. The elaborated composite structure is intended to be used in industrial sectors subject to great efforts and a high amplitude of vibration such as helicopter wings and air turbines.

Keywords: Hybrid sandwich structures, magnetorheological elastomer, honeycomb, 3-point bending, mechanical strength.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 204
727 An Analysis on Thermal Energy Storage in Paraffin-Wax Using Tube Array on a Shell and Tube Heat Exchanger

Authors: Syukri Himran, Rustan Taraka, Anto Duma

Abstract:

The aim of the study is to improve the understanding of latent and sensible thermal energy storage within a paraffin wax media by an array of cylindrical tubes arranged both in in-line and staggered layouts. An analytical and experimental study is carried out in a horizontal shell-and-tube type system during melting process. Pertamina paraffin-wax was used as a phase change material (PCM), while the tubes are embedded in the PCM. From analytical study we can obtain the useful information in designing a thermal energy storage such as: the motion of interface, amount of material melted at any time in the process, and the heat storage characteristic during melting. The use of staggered tubes is proposed compared to in-line layout in a heat exchanger as thermal storage. The experimental study is used to verify the validity of the analytical predictions. From the comparisons, the analytical and experimental data are in a good agreement.

Keywords: Latent, sensible, paraffin-wax, thermal energy storage, conduction, natural convection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3618
726 Parametric Analysis of Effective Factors on the Seismic Rehabilitation of the Foundations by Network Micropile

Authors: Keivan Abdollahi, Alireza Mortezaei

Abstract:

The main objective of seismic rehabilitation in the foundations is decreasing the range of horizontal and vertical vibrations and omitting high frequencies contents under the seismic loading. In this regard, the advantages of micropiles network is utilized. Reduction in vibration range of foundation can be achieved by using high dynamic rigidness module such as deep foundations. In addition, natural frequency of pile and soil system increases in regard to rising of system rigidness. Accordingly, the main strategy is decreasing of horizontal and vertical seismic vibrations of the structure. In this case, considering the impact of foundation, pile and improved soil foundation is a primary concern. Therefore, in this paper, effective factors are studied on the seismic rehabilitation of foundations applying network micropiles in sandy soils with nonlinear reaction.

Keywords: Micropile network, rehabilitation, vibration, seismic load.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2033
725 Control of Vibrations in Flexible Smart Structures using Fast Output Sampling Feedback Technique

Authors: T.C. Manjunath, B. Bandyopadhyay

Abstract:

This paper features the modeling and design of a Fast Output Sampling (FOS) Feedback control technique for the Active Vibration Control (AVC) of a smart flexible aluminium cantilever beam for a Single Input Single Output (SISO) case. Controllers are designed for the beam by bonding patches of piezoelectric layer as sensor / actuator to the master structure at different locations along the length of the beam by retaining the first 2 dominant vibratory modes. The entire structure is modeled in state space form using the concept of piezoelectric theory, Euler-Bernoulli beam theory, Finite Element Method (FEM) and the state space techniques by dividing the structure into 3, 4, 5 finite elements, thus giving rise to three types of systems, viz., system 1 (beam divided into 3 finite elements), system 2 (4 finite elements), system 3 (5 finite elements). The effect of placing the sensor / actuator at various locations along the length of the beam for all the 3 types of systems considered is observed and the conclusions are drawn for the best performance and for the smallest magnitude of the control input required to control the vibrations of the beam. Simulations are performed in MATLAB. The open loop responses, closed loop responses and the tip displacements with and without the controller are obtained and the performance of the proposed smart system is evaluated for vibration control.

Keywords: Smart structure, Finite element method, State spacemodel, Euler-Bernoulli theory, SISO model, Fast output sampling, Vibration control, LMI

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1829
724 Efficient Hardware Realization of Truncated Multipliers using FPGA

Authors: Muhammad H. Rais,

Abstract:

Truncated multiplier is a good candidate for digital signal processing (DSP) applications including finite impulse response (FIR) and discrete cosine transform (DCT). Through truncated multiplier a significant reduction in Field Programmable Gate Array (FPGA) resources can be achieved. This paper presents for the first time a comparison of resource utilization of Spartan-3AN and Virtex-5 implementation of standard and truncated multipliers using Very High Speed Integrated Circuit Hardware Description Language (VHDL). The Virtex-5 FPGA shows significant improvement as compared to Spartan-3AN FPGA device. The Virtex-5 FPGA device shows better performance with a percentage ratio of number of occupied slices for standard to truncated multipliers is increased from 40% to 73.86% as compared to Spartan- 3AN is decreased from 68.75% to 58.78%. Results show that the anomaly in Spartan-3AN FPGA device average connection and maximum pin delay have been efficiently reduced in Virtex-5 FPGA device.

Keywords: Digital Signal Processing (DSP), FieldProgrammable Gate Array (FPGA), Spartan-3AN, TruncatedMultiplier, Virtex-5, VHDL.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2567
723 Sustainable Design of Impinging Premixed Slot Jets

Authors: T.T. Wong, C.W. Leung, M.C. Wong

Abstract:

Cooktop burners are widely used nowadays. In cooktop burner design, nozzle efficiency and greenhouse gas(GHG) emissions mainly depend on heat transfer from the premixed flame to the impinging surface. This is a complicated issue depending on the individual and combined effects of various input combustion variables. Optimal operating conditions for sustainable burner design were rarely addressed, especially in the case of multiple slot-jet burners. Through evaluating the optimal combination of combustion conditions for a premixed slot-jet array, this paper develops a practical approach for the sustainable design of gas cooktop burners. Efficiency, CO and NOx emissions in respect of an array of slot jets using premixed flames were analysed. Response surface experimental design were applied to three controllable factors of the combustion process, viz. Reynolds number, equivalence ratio and jet-to-vessel distance. Desirability Function Approach(DFA) is the analytic technique used for the simultaneous optimization of the efficiency and emission responses.

Keywords: optimization, premixed slot jets

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1451
722 Free Vibration Analysis of Functionally Graded Pretwisted Plate in Thermal Environment Using Finite Element Method

Authors: S. Parida, S. C. Mohanty

Abstract:

The free vibration behavior of thick pretwisted cantilevered functionally graded material (FGM) plate subjected to the thermal environment is investigated numerically in the present paper. A mathematical model is developed in the framework of higher order shear deformation theory (HOST) with C0 finite element formulation i.e. independent displacement and rotations. The material properties are assumed to be temperature dependent and vary continuously through the thickness based on the volume fraction exponent in simple power rule. The finite element model has been discretized into eight node quadratic serendipity elements with node wise seven degrees of freedom. The effect of plate geometry, temperature field, material composition, and the modal analysis on the vibrational characteristics is examined. Finally, the results are verified by comparing with those available in literature.

Keywords: FGM, pretwisted plate, thermal environment, HOST, simple power law.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 794
721 Orthogonal Array Application and Response Surface Method Approach for Optimal Product Values: An Application for Oil Blending Process

Authors: Christopher C. Ihueze, Constance C. Obiuto, Christian E. Okafor, Charles C. Okpala

Abstract:

This paper presents a methodical approach for designing and optimizing process parameters in oil blending industries. Twenty seven replicated experiments were conducted for production of A-Z crown super oil (SAE20W/50) employing L9 orthogonal array to establish process response parameters. Power law model was fitted to experimental data and the obtained model was optimized applying the central composite design (CCD) of response surface methodology (RSM). Quadratic model was found to be significant for production of A-Z crown supper oil. The study recognized and specified four new lubricant formulations that conform to ISO oil standard in the course of analyzing the batch productions of A-Z crown supper oil as: L1: KV = 21.8293Cst, BS200 = 9430.00Litres, Ad102=11024.00Litres, PVI = 2520 Litres, L2: KV = 22.513Cst, BS200 = 12430.00 Litres, Ad102 = 11024.00 Litres, PVI = 2520 Litres, L3: KV = 22.1671Cst, BS200 = 9430.00 Litres, Ad102 = 10481.00 Litres, PVI= 2520 Litres, L4: KV = 22.8605Cst, BS200 = 12430.00 Litres, Ad102 = 10481.00 Litres, PVI = 2520 Litres. The analysis of variance showed that quadratic model is significant for kinematic viscosity production while the R-sq value statistic of 0.99936 showed that the variation of kinematic viscosity is due to its relationship with the control factors. This study therefore resulted to appropriate blending proportions of lubricants base oil and additives and recommends the optimal kinematic viscosity of A-Z crown super oil (SAE20W/50) to be 22.86Cst.

Keywords: Additives, control factors, kinematic viscosity, lubricant, orthogonal array, process parameter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1950
720 An Integrated CFD and Experimental Analysis on Double-Skin Window

Authors: Sheam-Chyun Lin, Wei-Kai Chen, Hung-Cheng Yen, Yung-Jen Cheng, Yu-Cheng Chen

Abstract:

Result from the constant dwindle in natural resources, the alternative way to reduce the costs in our daily life would be urgent to be found in the near future. As the ancient technique based on the theory of solar chimney since roman times, the double-skin façade are simply composed of two large glass panels in purpose of daylighting and also natural ventilation in the daytime. Double-skin façade is generally installed on the exterior side of buildings as function as the window, so there is always a huge amount of passive solar energy the façade would receive to induce the airflow every sunny day. Therefore, this article imposes a domestic double-skin window for residential usage and attempts to improve the volume flow rate inside the cavity between the panels by the frame geometry design, the installation of outlet guide plate and the solar energy collection system. Note that the numerical analyses are applied to investigate the characteristics of flow field, and the boundary conditions in the simulation are totally based on the practical experiment of the original prototype. Then we redesign the prototype from the knowledge of the numerical results and fluid dynamic theory, and later the experiments of modified prototype will be conducted to verify the simulation results. The velocities at the inlet of each case are increase by 5%, 45% and 15% from the experimental data, and also the numerical simulation results reported 20% improvement in volume flow rate both for the frame geometry design and installation of outlet guide plate.

Keywords: Solar energy, Double-skin façades, Thermal buoyancy, Fluid machinery.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1523
719 Optimization of Solar Rankine Cycle by Exergy Analysis and Genetic Algorithm

Authors: R. Akbari, M. A. Ehyaei, R. Shahi Shavvon

Abstract:

Nowadays, solar energy is used for energy purposes such as the use of thermal energy for domestic, industrial and power applications, as well as the conversion of the sunlight into electricity by photovoltaic cells. In this study, the thermodynamic simulation of the solar Rankin cycle with phase change material (paraffin) was first studied. Then energy and exergy analyses were performed. For optimization, a single and multi-objective genetic optimization algorithm to maximize thermal and exergy efficiency was used. The parameters discussed in this paper included the effects of input pressure on turbines, input mass flow to turbines, the surface of converters and collector angles on thermal and exergy efficiency. In the organic Rankin cycle, where solar energy is used as input energy, the fluid selection is considered as a necessary factor to achieve reliable and efficient operation. Therefore, silicon oil is selected for a high-temperature cycle and water for a low-temperature cycle as an operating fluid. The results showed that increasing the mass flow to turbines 1 and 2 would increase thermal efficiency, while it reduces and increases the exergy efficiency in turbines 1 and 2, respectively. Increasing the inlet pressure to the turbine 1 decreases the thermal and exergy efficiency, and increasing the inlet pressure to the turbine 2 increases the thermal efficiency and exergy efficiency. Also, increasing the angle of the collector increased thermal efficiency and exergy. The thermal efficiency of the system was 22.3% which improves to 33.2 and 27.2% in single-objective and multi-objective optimization, respectively. Also, the exergy efficiency of the system was 1.33% which has been improved to 1.719 and 1.529% in single-objective and multi-objective optimization, respectively. These results showed that the thermal and exergy efficiency in a single-objective optimization is greater than the multi-objective optimization.

Keywords: Exergy analysis, Genetic algorithm, Rankine cycle, Single and Multi-objective function.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 641
718 Studying the Effect of Shading by Rooftop PV Panels on Dwellings’ Thermal Performance

Authors: Saad Odeh

Abstract:

Thermal performance is considered to be a key measure in building sustainability. One of the technologies used in the current building sustainable design is the rooftop solar PV power generators. The application of this type of technology has expanded vastly during the last five years in many countries. This paper studies the effect of roof shading developed by the solar PV panels on dwellings’ thermal performance. The analysis in this work is performed by using two types of packages: “AccuRate Sustainability” for rating the energy efficiency of residential building design, and “PVSYST” for the solar PV power system design. The former package is used to calculate the annual heating and cooling load, and the later package is used to evaluate the power production from the roof top PV system. The analysis correlates the electrical energy generated from the PV panels to the change in the heating and cooling load due to roof shading. Different roof orientation, roof inclination, roof insulation, as well as PV panel area are considered in this study. The analysis shows that the drop in energy efficiency due to the shaded area of the roof by PV panels is negligible compared to the energy generated by these panels.

Keywords: Energy efficiency, roof shading, thermal performance, PV panel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1282
717 The Design of Acoustic Horns for Ultrasonic Aided Tube Double Side Flange Making

Authors: Kuen-Ming Shu, Jyun-Wei Chen

Abstract:

Encapsulated O-rings are specifically designed to address the problem of sealing the most hostile chemicals and extreme temperature applications. Ultrasonic vibration hot embossing and ultrasonic welding techniques provide a fast and reliable method to fabricate encapsulated O-ring. This paper performs the design and analysis method of the acoustic horns with double extrusion to process tube double side flange simultaneously. The paper deals with study through Finite Element Method (FEM) of ultrasonic stepped horn used to process a capsulated O-ring, the theoretical dimensions of horns, and their natural frequencies and amplitudes are obtained through the simulations of COMOSOL software. Furthermore, real horns were fabricated, tested and verified to proof the practical utility of these horns. 

Keywords: Encapsulated O-rings, ultrasonic vibration hot embossing, flange making, acoustic horn, finite element analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3410
716 Design, Manufacture and Test of a Solar Powered Audible Bird Scarer

Authors: Turhan Koyuncu, Fuat Lule

Abstract:

The most common domestic birds live in Turkey are: crows (Corvus corone), pigeons (Columba livia), sparrows (Passer domesticus), starlings (Sturnus vulgaris) and blackbirds (Turdus merula). These birds give damage to the agricultural areas and make dirty the human life areas. In order to send away these birds, some different materials and methods such as chemicals, treatments, colored lights, flash and audible scarers are used. It is possible to see many studies about chemical methods in the literatures. However there is not enough works regarding audible bird scarers are reported in the literature. Therefore, a solar powered bird scarer was designed, manufactured and tested in this experimental investigation. Firstly, to understand the sensitive level of these domestic birds against to the audible scarer, many series preliminary studies were conducted. These studies showed that crows are the most resistant against to the audible bird scarer when compared with pigeons, sparrows, starlings and blackbirds. Therefore the solar powered audible bird scarer was tested on crows. The scarer was tested about one month during April- May, 2007. 18 different common known predators- sounds (voices or calls) of domestic birds from Falcon (Falco eleonorae), Falcon (Buteo lagopus), Eagle (Aquila chrysaetos), Montagu-s harrier (Circus pygargus) and Owl (Glaucidium passerinum) were selected for test of the scarer. It was seen from the results that the reaction of the birds was changed depending on the predators- sound type, camouflage of the scarer, sound quality and volume, loudspeaker play and pause periods in one application. In addition, it was also seen that the sound from Falcon (Buteo lagopus) was most effective on crows and the scarer was enough efficient.

Keywords: Bird damage, Audible scarer, Solar powered scarer, Predator sound

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3680
715 Free Vibration Analysis of Gabled Frame Considering Elastic Supports and Semi-Rigid Connections

Authors: A. Shooshtari, A. R. Masoodi, S. Heyrani Moghaddam

Abstract:

Free vibration analysis of a gabled frame with elastic support and semi-rigid connections is performed by using a program in OpenSees software. Natural frequencies and mode shape details of frame are obtained for two states, which are semi-rigid connections and elastic supports, separately. The members of this structure are analyzed as a prismatic nonlinear beam-column element in software. The mass of structure is considered as two equal lumped masses at the head of two columns in horizontal and vertical directions. Note that the degree of freedom, allocated to all nodes, is equal to three. Furthermore, the mode shapes of frame are achieved. Conclusively, the effects of connections and supports flexibility on the natural frequencies and mode shapes of structure are investigated.  

Keywords: Natural frequency, mode shape, gabled frame, semi-rigid connection, elastic support, OpenSees software.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3022
714 Controller Design for Euler-Bernoulli Smart Structures Using Robust Decentralized FOS via Reduced Order Modeling

Authors: T.C. Manjunath, B. Bandyopadhyay

Abstract:

This paper features the modeling and design of a Robust Decentralized Fast Output Sampling (RDFOS) Feedback control technique for the active vibration control of a smart flexible multimodel Euler-Bernoulli cantilever beams for a multivariable (MIMO) case by retaining the first 6 vibratory modes. The beam structure is modeled in state space form using the concept of piezoelectric theory, the Euler-Bernoulli beam theory and the Finite Element Method (FEM) technique by dividing the beam into 4 finite elements and placing the piezoelectric sensor / actuator at two finite element locations (positions 2 and 4) as collocated pairs, i.e., as surface mounted sensor / actuator, thus giving rise to a multivariable model of the smart structure plant with two inputs and two outputs. Five such multivariable models are obtained by varying the dimensions (aspect ratios) of the aluminium beam. Using model order reduction technique, the reduced order model of the higher order system is obtained based on dominant Eigen value retention and the Davison technique. RDFOS feedback controllers are designed for the above 5 multivariable-multimodel plant. The closed loop responses with the RDFOS feedback gain and the magnitudes of the control input are obtained and the performance of the proposed multimodel smart structure system is evaluated for vibration control.

Keywords: Smart structure, Euler-Bernoulli beam theory, Fastoutput sampling feedback control, Finite Element Method, Statespace model, Vibration control, LMI, Model order Reduction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1758
713 Study of a Developed Model Describing a Vacuum Membrane Distillation Unit Coupled to Solar Energy

Authors: Fatma Khaled, Khaoula Hidouri, Bechir Chaouachi

Abstract:

Desalination using solar energy coupled with membrane techniques such as vacuum membrane distillation (VMD) is considered as an interesting alternative for the production of pure water. During this work, a developed model of a polytetrafluoroethylene (PTFE) hollow fiber membrane module of a VMD unit of seawater was carried out. This simulation leads to establishing a comparison between the effects of two different equations of the vaporization latent heat on the membrane surface temperature and on the unit productivity. Besides, in order to study the effect of putting membrane modules in series on the outlet fluid temperature and on the productivity of the process, a simulation was executed.

Keywords: Vacuum membrane distillation, membrane module, membrane temperature, productivity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 617
712 In situ Modelling of Lateral-Torsional Vibration of a Rotor-Stator with Multiple Parametric Excitations

Authors: B. X. Tchomeni, A. A. Alugongo, L. M. Masu

Abstract:

This paper presents a 4-DOF nonlinear model of a cracked de Laval rotor-stator system derived based on Energy Principles. The model has been used to simulate coupled torsionallateral response of the faulty system with multiple parametric excitations; rotor-stator-rub, a breathing transverse crack, eccentric mass and an axial force. Nonlinearity of a “breathing” crack is incorporated in the model using a simple hinge mechanism suitable for a shallow crack. Response of the system while passing via its critical speed with intermittent rotor-stator rub is analyzed. Effects of eccentricity with phase and acceleration are investigated. Features of crack, rub and eccentricity in vibration response are explored for condition monitoring. The presence of a crack and rub are observable in the power spectrum despite excitations by an axial force and rotor unbalance. Obtained results are consistent with existing literature and could be adopted into rotor condition monitoring strategies.

Keywords: Axial force, Crack, Nonlinear, Rotor-Stator, Rub.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2223
711 Electron Filling Factor and Sunlight Concentration Effects on the Efficiency of Intermediate Band Solar Cell

Authors: Nima Es'haghi Gorji, Hossein Movla, Foozieh Sohrabi, Alireza Mottaghizadeh, Mohammad Houshmand, Hassan Babaei, Arash Nikniazi

Abstract:

For a determined intermediate band position, the effects of electron filling factor and sunlight concentration on the active region thickness and efficiency of the quantum-dot intermediate band solar cell are calculated. For each value of electron filling factor, the maximum point of efficiency obtained and resulted in the optimum thickness of the cell under three different sunlight concentrations. We show the importance of filling factor as a parameter to be more considered. The photon recycling effect eliminated in all calculations.

Keywords: Intermediate band, Sunlight concentration, Efficiency limits, Electron filling factor

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1542
710 A Retrospective of Wind Turbine Architectural Integration in the Built Environment

Authors: Stefano Degrassi, Marco Raciti Castelli, Ernesto Benini

Abstract:

Since the European renewable energy directives set the target for 22.1% of electricity generation to be supplied by 2010 [1], there has been increased interest in using green technologies also within the urban enviroment. The most commonly considered installations are solar thermal and solar photovoltaics. Nevertheless, as observed by Bahaj et al. [2], small scale turbines can reduce the built enviroment related CO2 emissions. Thus, in the last few years, an increasing number of manufacturers have developed small wind turbines specifically designed for the built enviroment. The present work focuses on the integration into architectural systems of such installations and presents a survey of successful case studies.

Keywords: Wind turbines, architectural integration, wind resources, urban areas, built enviroment, renewable technologies.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2795
709 Application of Transform Fourier for Dynamic Control of Structures with Global Positioning System

Authors: J. M. de Luis Ruiz, P. M. Sierra García, R. P. García, R. P. Álvarez, F. P. García, E. C. López

Abstract:

Given the evolution of viaducts, structural health monitoring requires more complex techniques to define their state. two alternatives can be distinguished: experimental and operational modal analysis. Although accelerometers or Global Positioning System (GPS) have been applied for the monitoring of structures under exploitation, the dynamic monitoring during the stage of construction is not common. This research analyzes whether GPS data can be applied to certain dynamic geometric controls of evolving structures. The fundamentals of this work were applied to the New Bridge of Cádiz (Spain), a worldwide milestone in bridge building. GPS data were recorded with an interval of 1 second during the erection of segments and turned to the frequency domain with Fourier transform. The vibration period and amplitude were contrasted with those provided by the finite element model, with differences of less than 10%, which is admissible. This process provides a vibration record of the structure with GPS, avoiding specific equipment.

Keywords: Fourier transform, global position system, operational modal analysis, structural health monitoring.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 942
708 Large Vibration Amplitudes of Circular Functionally Graded Thin Plates Resting on Winkler Elastic Foundations

Authors: El Kaak, Rachid, El Bikri, Khalid, Benamar, Rhali

Abstract:

This paper describes a study of geometrically nonlinear free vibration of thin circular functionally graded (CFGP) plates resting on Winkler elastic foundations. The material properties of the functionally graded composites examined here are assumed to be graded smoothly and continuously through the direction of the plate thickness according to a power law and are estimated using the rule of mixture. The theoretical model is based on the classical Plate theory and the Von-Kármán geometrical nonlinearity assumptions. An homogenization procedure (HP) is developed to reduce the problem considered here to that of isotropic homogeneous circular plates resting on Winkler foundation. Hamilton-s principle is applied and a multimode approach is derived to calculate the fundamental nonlinear frequency parameters which are found to be in a good agreement with the published results. On the other hand, the influence of the foundation parameters on the nonlinear fundamental frequency has also been analysed.

Keywords: Functionally graded materials, nonlinear vibrations, Winkler foundation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1851
707 Advantages of Combining Solar Greenhouse System and Trombe Wall in Hot and Dry Climate and Housing Design: The Case of Isfahan

Authors: Yalda Safaralipour, Seyed Ahmad Shahgoli

Abstract:

Nowadays over-consumption of fossil energy in buildings especially in residential buildings and also considering the increase in populations, the crisis of energy shortage in a near future is predictable. The recent performance of developed countries in construction with the aim of decreasing fossil energies shows that these countries have understood the incoming crisis and has taken reasonable and basic actions in this regard. However, Iranian architecture, with several thousands years of history, has acquired and executed invaluable experiences in designing, adapting and coordinating with the nature. Architectural studies during the recent decades show that imitating modern western architecture results in high energy wastage beside the fact that it not reasonably adaptable and corresponded with the habits and customs of people unlike the architecture in the past which was compatible and adaptable with the climatic conditions and this necessitates optimal using of renewable energies more than ever. This paper studies problems of design, execution and living in today's houses and reviews the characteristics of climatic elements paying special attention to the performance of trombe wall and solar greenhouse in traditional houses and offers some suggestions for combining these two elements and a climatic strategy.

Keywords: Climatic Designing, Housing in Hot & Dry Area, Solar Greenhouse, Trombe Wall.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2383
706 Clinical Factors of Quality Switched Ruby Laser Therapy for Lentigo Depigmentation

Authors: SunWoo Lee, TaeBum Lee, YoonHwa Park, YooJeong Kim

Abstract:

Solar lentigines appear predominantly on chronically sun-exposed areas of skin, such as the face and the back of the hands. Among the several ways to lentigines treatment, quality-switched lasers are well-known effective treatment for removing solar lentigines. The present pilot study was therefore designed to assess the efficacy of quality-switched ruby laser treatment of such lentigines compare between pretreatment and posttreatment of skin brightness. Twenty-two adults with chronic sun-damaged skin (mean age 52.8 years, range 37–74 years) were treated at the Korean site. A 694 nm Q-switched ruby laser was used, with the energy density set from 1.4 to 12.5 J/cm2, to treat solar lentigines. Average brightness of skin color before ruby laser treatment was 137.3 and its skin color was brightened after ruby laser treatment by 150.5. Also, standard deviation of skin color was decreased from 17.8 to 16.4. Regarding the multivariate model, age and energy were identified as significant factors for skin color brightness change in lentigo depigmentation by ruby laser treatment. Their respective odds ratios were 1.082 (95% CI, 1.007–1.163), and 1.431 (95% CI, 1.051–1.946). Lentigo depigmentation treatment using ruby lasers resulted in a high performance in skin color brightness. Among the relative factors involve with ruby laser treatment, age and energy were the most effective factors which skin color change to brighter than pretreatment.

Keywords: Depigmentation, lentigo, quality switched ruby laser, skin color.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1914
705 Development of New Control Techniques for Vibration Isolation of Structures using Smart Materials

Authors: Shubha P Bhat, Krishnamurthy, T.C.Manjunath, C. Ardil

Abstract:

In this paper, the effects of the restoring force device on the response of a space frame structure resting on sliding type of bearing with a restoring force device is studied. The NS component of the El - Centro earthquake and harmonic ground acceleration is considered for earthquake excitation. The structure is modeled by considering six-degrees of freedom (three translations and three rotations) at each node. The sliding support is modeled as a fictitious spring with two horizontal degrees of freedom. The response quantities considered for the study are the top floor acceleration, base shear, bending moment and base displacement. It is concluded from the study that the displacement of the structure reduces by the use of the restoring force device. Also, the peak values of acceleration, bending moment and base shear also decreases. The simulation results show the effectiveness of the developed and proposed method.

Keywords: DOF, Space structures, Acceleration, Excitation, Smart structure, Vibration, Isolation, Earthquakes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1848
704 Investigating the Geopolymerization Process of Aluminosilicates and Its Impact on the Compressive Strength of the Produced Geopolymers

Authors: Heba Z. Fouad, Tarek M. Madkour, Safwan A. Khedr

Abstract:

This paper investigates multiple factors that impact the formation of geopolymers and their compressive strength to be utilized in construction as an environmentally-friendly material. Bentonite and Kaolinite were thermally calcinated at 750 °C to obtain Metabentonite and Metakaolinite with higher reactivity. Both source materials were activated using a solution of sodium hydroxide (NaOH). Thereafter, samples were cured at different temperatures. The samples were analyzed chemically using a host of spectroscopic techniques. The bulk density and compressive strength of the produced geopolymer pastes were studied. Findings indicate that the ratio of NaOH solution to source material affects the compressive strength, being optimal at 0.54. Moreover, controlled heat curing was proven effective to improve compressive strength. The existence of characteristic Fourier Transform Infrared Spectroscopy (FTIR) peaks at approximately 1020 cm-1 and 460 cm-1 which correspond to the asymmetric stretching vibration of Si-O-T and bending vibration of Si-O-Si, hence, confirming the formation of the target geopolymer.

Keywords: alcination of metakaolinite, compressive strength, FTIR analysis, geopolymer, green cement

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 396
703 A Wireless Feedback Control System as a Base of Bio-Inspired Structure System to Mitigate Vibration in Structures

Authors: Gwanghee Heo, Geonhyeok Bang, Chunggil Kim, Chinok Lee

Abstract:

This paper attempts to develop a wireless feedback control system as a primary step eventually toward a bio-inspired structure system where inanimate structure behaves like a life form autonomously. It is a standalone wireless control system which is supposed to measure externally caused structural responses, analyze structural state from acquired data, and take its own action on the basis of the analysis with an embedded logic. For an experimental examination of its effectiveness, we applied it on a model of two-span bridge and performed a wireless control test. Experimental tests have been conducted for comparison on both the wireless and the wired system under the conditions of Un-control, Passive-off, Passive-on, and Lyapunov control algorithm. By proving the congruence of the test result of the wireless feedback control system with the wired control system, its control performance was proven to be effective. Besides, it was found to be economical in energy consumption and also autonomous by means of a command algorithm embedded into it, which proves its basic capacity as a bio-inspired system.

Keywords: Structural vibration control, wireless system, MR damper, feedback control, embedded system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 754
702 Eco-friendly and Cleaner Process for Isolation of Essential Oil Using Photovoltaic Energy: Experimental and Theoretical Study

Authors: Hanen Nafaa, Maissa Farhat, Sina Ouriemi, Sbita Lassaad

Abstract:

The use of renewable energies is growing significantly worldwide. Faced with the increasing demand for electrical energy, mainly for the needs of remote, deserted and mountainous regions, numerous applications use photovoltaic energy. In this sense, the proposed study concerns a mathematical modeling and an experimental validation for the recovery of essential oil by a steam distillation system using photovoltaic energy. In this paper, we proceed to a modeling of the solar system that includes a photovoltaic (PV) generator with an electronic power converter allowing a continuation of the optimum operating point. The results obtained are promising and are validated practically.

Keywords: Boiling in tubes, DC-DC converter, desalination, maximum power point tracking command, photovoltaic energy, solar generator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 724
701 Passenger Seat Vibration Comparison Using ANFIS Control in Active Quarter Car Model

Authors: Devdutt

Abstract:

In this paper, vibration control response of passenger seat in quarter car model having three degrees of freedom is studied. Three different control strategies are taken into account using Adaptive Neuro Fuzzy Inference System (ANFIS) controller. In first case, ANFIS controller is applied in main suspension of active quarter car model. In second case, passenger seat suspension is assembled with ANFIS controller. Finally, both main and passenger seat suspensions are integrated with ANFIS controller. Simulation work under random road excitations is performed using passive and controlled quarter car models for performance comparison of passenger ride comfort. Ride comfort analysis is also compared as per ISO 2631-1 criterion. The obtained simulation responses are compared taking passenger seat acceleration and displacement response in time and frequency domain for the selection of best control strategy in designed quarter car model.

Keywords: Active suspension system, ANFIS controller, passenger ride comfort, quarter car model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 841