
 

 

 
Abstract—In this paper, passenger ride comfort issues are studied 

taking active quarter car model with three degrees of freedom. A 
hybrid fuzzy – PID controller with coupled rules (HFPIDCR) is 
designed for vibration control of passenger seat. Three different 
control strategies are considered. In first case, main suspension is 
controlled. In second case, passenger seat suspension is controlled. In 
third case, both main suspension and passenger seat suspensions are 
controlled. Passenger seat acceleration and displacement results are 
obtained using bump and sinusoidal type road disturbances. Finally, 
obtained simulation results of designed uncontrolled and controlled 
quarter car models are compared and discussed to select best control 
strategy for achieving high level of passenger ride comfort. 
 

Keywords—Active suspension system, HFPIDCR controller, 
passenger ride comfort, quarter car model. 

I. INTRODUCTION 

USPENSION system is important part in vehicles from 
design and application considerations to fulfil multiple 

tasks such as vehicle handling as well as passenger ride 
comfort and safety during running period. Suspension systems 
can be categorized into passive, semi-active and active types 
[1]-[3]. Passive suspension systems are mostly used in 
automotive sector due to less cost and unavailability of latest 
active and semi-active type suspension technology. But 
passive suspension systems can provide limited performance 
related to vibration control under various road conditions. On 
the other hand, active suspension technology can provide best 
vehicle handling and passenger ride experience [4]. Active 
suspension is integrated with mechatronic based devices such 
as sensors and actuators.  

In past, various linear and non-linear control algorithms 
have been used in quarter car model with active suspension 
system. Fialho and Balas [5] used the road adaptation factor 
where linear parameter-varying control was used in 
combination with nonlinear backstepping technique to design 
lower and higher level control for active quarter car 
suspension model. Simulation results showed the superior 
performance of adaptive suspension controllers in providing 
passenger ride comfort compared to passive one. Huang and 
Lin [6] proposed a neural network based sliding mode control 
for application in active quarter car suspension system. The 
proposed model had on-line learning ability to control the 
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uncertain behaviour of the system by varying the neural 
network parameters. The experimental results showed the 
superior performance of proposed controller in sprung mass 
vibration suppression compared to passive type against input 
road disturbances. Lauwerys et al. [7] used μ-synthesis based 
on the DK-iteration scheme to design controller for 
application in active suspension of a quarter car test-rig. The 
frequency domain identification technique was used for linear 
black box models identification. Simulated and experimental 
results on test-rig presented the desired performance of the 
system. Huang and Chen [8] proposed a functional 
approximation (FA) based adaptive sliding mode controller 
with AFSMC compensation (FA + AFSMC) strategy for 
vibration control in active quarter car system. The 
experimental results showed the superior performance of 
FA + AFSMC controller in sprung mass vibration control 
compared to fuzzy adaptive and sliding mode control. 
Mouleeswaran [9] used PID controller for improving 
passenger ride comfort and vehicle handling in active quarter 
car model. The simulation results showed better performance 
of designed active system in terms of vibration control of 
sprung mass, suspension travel and tire respectively compared 
to passive one. Salem and Aly [10] studied the application of 
Fuzzy and PID control in active quarter car model with 2 
degree-of-freedom to enhance the vehicle handling and ride 
comfort. Simulation results presented the comparative results 
of Fuzzy and PID controlled suspension systems. Shirjoposht 
et al. [11] developed an optimal law using states estimation 
with Extended Kalman Filter (EKF) as well as Taylor series 
expansion method for an active quarter car model. Simulation 
results showed the effectiveness of proposed controller 
compared to proportional integral sliding mode controller in 
achieving good passenger ride comfort and safety. Gao and 
Kaynak [12] used Kalman-Yakubovich-Popov (KYP) lemma 
for improving ride comfort in active quarter car model in 
specific finite frequency band. Linear matrix inequality 
optimization was used for feedback controller design. Ismail et 
al. [13] applied composite nonlinear feedback (CNF) control 
technique having a linear control law and a nonlinear feedback 
part for controller design in active suspension system. 
Simulation results proved the success of CNF controller 
compared to LQR controller and passive model. Ansari and 
Taparia [14] used improved sliding mode control with an 
observer design in active quarter car model to achieve better 
passenger ride comfort and vehicle handling characteristics. 
Extensive simulation work showed the better performance of 
proposed controller in improving the ride comfort and road 
handling issues. Sun et al. [15] designed a constrained 
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Fig. 5 Bump road profile 
  

 

Fig. 6 Bump response of passenger seat acceleration, passenger seat displacement 
 

 

Fig. 7 PSD of passenger seat acceleration, passenger seat displacement  
 

 

Fig. 8 Control force supplied by HFPIDCR controller in suspension system (a) Suspension controlled; (b) Passenger seat controlled; (c) Fully 
controlled; (d) Fully controlled 
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TABLE II 
PASSENGER SEAT RESULTS UNDER BUMP ROAD PROFILE 

Controller Type 
Acceleration (m/s2) Displacement (m) 

Peak RMS Peak RMS 

Uncontrolled 2.9570 0.9631 0.0430 0.0123 

Seat controlled 1.9962 0.5643 0.0257 0.0071 

Suspension controlled 1.3483 0.3414 0.0121 0.0033 

Fully controlled 0.9691 0.2283 0.0069 0.0022 

 
TABLE III 

CALCULATED MAXIMUM CONTROL FORCE GENERATED BY HFPIDCR 

CONTROLLER 

Working stage  
Suspension 
Controlled  

Seat 
Controlled 

Fully Controlled 

  N  N  N  N 

Rebound 711.1 150.0 759.7 15.6 

Compression 1641.2 218.3 1664.8 77.9 

B. Simulation for Sinusoidal Road Profile 

In this case, the road irregularities for input excitation to 
quarter car model are sinusoidal type with amplitude of 0.02 m 
and frequency of 20 rad/sec as shown in Fig. 9. The passenger 
seat vibration response in time domain for HFPIDCR 
controlled and uncontrolled suspension systems can be seen in 
Fig. 10. It can be seen from Fig. 10 that fully controlled 
suspension system provide much improved passenger seat 
acceleration and displacement response under sinusoidal road 
excitations compared to uncontrolled and other controlled 
cases.  

Fig. 11 shows the computed PSD of the passenger seat 
acceleration and displacement response under sinusoidal road 

profile for uncontrolled and various controlled suspension 
systems. It can be seen that the fully controlled suspension 
system provided maximum reduction in PSD of passenger seat 
acceleration and displacement magnitude showing its 
effectiveness in achieving best passenger ride comfort 
compared to uncontrolled and various controlled cases.  

Table IV represents peak and RMS values of passenger seat 
vibrations for acceleration and displacement response for 
different controlled cases and uncontrolled case on sinusoidal 
type road excitation. The passenger seat vibration reduction 
response is best in case of fully controlled suspension system 
in quarter car model compared to all other cases. 

 
TABLE IV 

PASSENGER SEAT RESULTS UNDER SINUSOIDAL ROAD PROFILE 

Controller Type 
Acceleration (m/s2) Displacement (m) 

Peak RMS Peak RMS 

Uncontrolled 2.1665   1.3792   0.0127   0.0041   

Seat controlled 1.1899   0.8603     0.0076    0.0024    

Suspension controlled 0.7243     0.5292     0.0040    0.0014    

Fully controlled 0.5654 0.3240 0.0023 0.0009 

 
Fig. 12 shows the supplied control force by HFPIDCR 

controller in quarter car suspension system by various used 
control strategies. Table V displays the peak values of 
generated control force by HFPIDCR controller in suspension 
system during rebound and compression stage for sinusoidal 
type of road excitation. 

 

 

  

Fig. 9 Sinusoidal road profile 
 

 

Fig. 10 Sinusoidal response of passenger seat acceleration, passenger seat displacemnt  
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Fig. 11 PSD of passenger seat acceleration, passenger seat displacemnt  
 

 

Fig. 12 Control force supplied by HFPIDCR controller in suspension system (a) Suspension controlled; (b) Passenger seat controlled; (c) Fully 
controlled; (d) Fully controlled 

 
TABLE V 

CALCULATED MAXIMUM CONTROL FORCE GENERATED BY HFPIDCR 

CONTROLLER 

Working stage  
Suspension 
Controlled  

Seat 
Controlled 

Fully Controlled 

  N  N  N  N 

Rebound 1877.5 96.7 1891.8 29.8 

Compression 862.3 85.9 875.6 33.6 

V. CONCLUSIONS 

In this paper, vibration control of passenger seat in quarter 
car model with three degrees of freedom was studied. Three 
different controlled cases with HFPIDCR controller were 
considered. In first case, controller was used in main 
suspension; in second case, controller was used in passenger 
seat suspension while in third case, controller was used in 
main and passenger seat suspension of active quarter car 
model. Simulation work was done under bump and sinusoidal 

type road excitations. Simulation results in graphical and 
mathematical terms showed the best effectiveness of fully 
controlled suspension system in vibration control of passenger 
seat compared to other used strategies.  

APPENDIX 
TABLE VI 

CONTROLLER PARAMETERS FOR MAIN SUSPENSION SYSTEM 

PID Gains FLC input – output scaling factors 

 = 1500   = 0.01  = 2 

 = 100  = 1.4  = 1 

 = 1000  = 8  = 1500 

 
TABLE VII 

CONTROLLER PARAMETERS FOR PASSENGER SEAT SUSPENSION SYSTEM 

PID Gains FLC input – output scaling factors 

 = 300   = 0.01  = 2 

 = 50  = 1.4  = 1 

 = 600  = 1.4  = 400 
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