Search results for: optical signal acquisition
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2063

Search results for: optical signal acquisition

1373 A Novel SVM-Based OOK Detector in Low SNR Infrared Channels

Authors: J. P. Dubois, O. M. Abdul-Latif

Abstract:

Support Vector Machine (SVM) is a recent class of statistical classification and regression techniques playing an increasing role in applications to detection problems in various engineering problems, notably in statistical signal processing, pattern recognition, image analysis, and communication systems. In this paper, SVM is applied to an infrared (IR) binary communication system with different types of channel models including Ricean multipath fading and partially developed scattering channel with additive white Gaussian noise (AWGN) at the receiver. The structure and performance of SVM in terms of the bit error rate (BER) metric is derived and simulated for these channel stochastic models and the computational complexity of the implementation, in terms of average computational time per bit, is also presented. The performance of SVM is then compared to classical binary signal maximum likelihood detection using a matched filter driven by On-Off keying (OOK) modulation. We found that the performance of SVM is superior to that of the traditional optimal detection schemes used in statistical communication, especially for very low signal-to-noise ratio (SNR) ranges. For large SNR, the performance of the SVM is similar to that of the classical detectors. The implication of these results is that SVM can prove very beneficial to IR communication systems that notoriously suffer from low SNR at the cost of increased computational complexity.

Keywords: Least square-support vector machine, on-off keying, matched filter, maximum likelihood detector, wireless infrared communication.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1939
1372 A Simulated Design and Analysis of a Solar Thermal Parabolic Trough Concentrator

Authors: Fauziah Sulaiman, Nurhayati Abdullah, Balbir Singh Mahinder Singh

Abstract:

In recent years Malaysia has included renewable energy as an alternative fuel to help in diversifying the country-s energy reliance on oil, natural gas, coal and hydropower with biomass and solar energy gaining priority. The scope of this paper is to look at the designing procedures and analysis of a solar thermal parabolic trough concentrator by simulation utilizing meteorological data in several parts of Malaysia. Parameters which include the aperture area, the diameter of the receiver and the working fluid may be varied to optimize the design. Aperture area is determined by considering the width and the length of the concentrator whereas the geometric concentration ratio (CR) is obtained by considering the width and diameter of the receiver. Three types of working fluid are investigated. Theoretically, concentration ratios can be very high in the range of 10 to 40 000 depending on the optical elements used and continuous tracking of the sun. However, a thorough analysis is essential as discussed in this paper where optical precision and thermal analysis must be carried out to evaluate the performance of the parabolic trough concentrator as the theoretical CR is not the only factor that should be considered.

Keywords: Parabolic trough concentrator, Concentration ratio, Intercept factor, Efficiency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3968
1371 Structural and Optical Properties of Ce3+ Doped YPO4: Nanophosphors Synthesis by Sol Gel Method

Authors: B. Kahouadji, L. Guerbous, L. Lamiri, A. Mendoud

Abstract:

Recently, nanomaterials are developed in the form of nano-films, nano-crystals and nano-pores. Lanthanide phosphates as a material find extensive application as laser, ceramic, sensor, phosphor, and also in optoelectronics, medical and biological labels, solar cells and light sources. Among the different kinds of rare-earth orthophosphates, yttrium orthophosphate has been shown to be an efficient host lattice for rare earth activator ions, which have become a research focus because of their important role in the field of light display systems, lasers, and optoelectronic devices. It is in this context that the 4fn- « 4fn-1 5d transitions of rare earth in insulating materials, lying in the UV and VUV, are the aim of large number of studies .Though there has been a few reports on Eu3+, Nd3+, Pr3+,Er3+, Ce3+, Tm3+ doped YPO4. The 4fn- « 4fn-1 5d transitions of the rare earth dependent to the host-matrix, several matrices ions were used to study these transitions, in this work we are suggesting to study on a very specific class of inorganic material that are orthophosphate doped with rare earth ions. This study focused on the effect of Ce3+ concentration on the structural and optical properties of Ce3+ doped YPO4 yttrium orthophosphate with powder form prepared by the Sol Gel method.

Keywords: YPO4, Ce3+, 4fn- <->4fn-1 5d transitions, scintillator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2714
1370 InAlGaN Quaternary Multi-Quantum Wells UVLaser Diode Performance and Characterization

Authors: S. M. Thahab, H. Abu Hassan, Z. Hassan

Abstract:

The InAlGaN alloy has only recently began receiving serious attention into its growth and application. High quality InGaN films have led to the development of light emitting diodes (LEDs) and blue laser diodes (LDs). The quaternary InAlGaN however, represents a more versatile material since the bandgap and lattice constant can be independently varied. We report an ultraviolet (UV) quaternary InAlGaN multi-quantum wells (MQWs) LD study by using the simulation program of Integrated System Engineering (ISE TCAD). Advanced physical models of semiconductor properties were used in order to obtain an optimized structure. The device performance which is affected by piezoelectric and thermal effects was studied via drift-diffusion model for carrier transport, optical gain and loss. The optical performance of the UV LD with different numbers of quantum wells was numerically investigated. The main peak of the emission wavelength for double quantum wells (DQWs) was shifted from 358 to 355.8 nm when the forward current was increased. Preliminary simulated results indicated that better output performance and lower threshold current could be obtained when the quantum number is four, with output power of 130 mW and threshold current of 140 mA.

Keywords: Nitride semiconductors, InAlGaN quaternary, UVLD, numerical simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1927
1369 Unified Power Flow Controller Placement to Improve Damping of Power Oscillations

Authors: M. Salehi, A. A. Motie Birjandi, F. Namdari

Abstract:

Weak damping of low frequency oscillations is a frequent phenomenon in electrical power systems. These frequencies can be damped by power system stabilizers. Unified power flow controller (UPFC), as one of the most important FACTS devices, can be applied to increase the damping of power system oscillations and the more effect of this controller on increasing the damping of oscillations depends on its proper placement in power systems. In this paper, a technique based on controllability is proposed to select proper location of UPFC and the best input control signal in order to enhance damping of power oscillations. The effectiveness of the proposed technique is demonstrated in IEEE 9 bus power system.

Keywords: Unified power flow controller (UPFC), controllability, small signal analysis, eigenvalues.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1891
1368 A New Approach to ECG Biometric Systems: A Comparitive Study between LPC and WPD Systems

Authors: Justin Leo Cheang Loong, Khazaimatol S Subari, Rosli Besar, Muhammad Kamil Abdullah

Abstract:

In this paper, a novel method for a biometric system based on the ECG signal is proposed, using spectral coefficients computed through linear predictive coding (LPC). ECG biometric systems have traditionally incorporated characteristics of fiducial points of the ECG signal as the feature set. These systems have been shown to contain loopholes and thus a non-fiducial system allows for tighter security. In the proposed system, incorporating non-fiducial features from the LPC spectrum produced a segment and subject recognition rate of 99.52% and 100% respectively. The recognition rates outperformed the biometric system that is based on the wavelet packet decomposition (WPD) algorithm in terms of recognition rates and computation time. This allows for LPC to be used in a practical ECG biometric system that requires fast, stringent and accurate recognition.

Keywords: biometric, ecg, linear predictive coding, wavelet packet decomposition

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2880
1367 The Application of Distributed Optical Strain Sensing to Measure Rock Bolt Deformation Subject to Bedding Shear

Authors: Thomas P. Roper, Brad Forbes, Jurij Karlovšek

Abstract:

Shear displacement along bedding defects is a well-recognised behaviour when tunnelling and mining in stratified rock. This deformation can affect the durability and integrity of installed rock bolts. In-situ monitoring of rock bolt deformation under bedding shear cannot be accurately derived from traditional strain gauge bolts as sensors are too large and spaced too far apart to accurately assess concentrated displacement along discrete defects. A possible solution to this is the use of fiber optic technologies developed for precision monitoring. Distributed Optic Sensor (DOS) embedded rock bolts were installed in a tunnel project with the aim of measuring the bolt deformation profile under significant shear displacements. This technology successfully measured the 3D strain distribution along the bolts when subjected to bedding shear and resolved the axial and lateral strain constituents in order to determine the deformational geometry of the bolts. The results are compared well with the current visual method for monitoring shear displacement using borescope holes, considering this method as suitable.

Keywords: Distributed optical strain sensing, geotechnical monitoring, rock bolt stain measurement, bedding shear displacement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 907
1366 From Electroencephalogram to Epileptic Seizures Detection by Using Artificial Neural Networks

Authors: Gaetano Zazzaro, Angelo Martone, Roberto V. Montaquila, Luigi Pavone

Abstract:

Seizure is the main factor that affects the quality of life of epileptic patients. The diagnosis of epilepsy, and hence the identification of epileptogenic zone, is commonly made by using continuous Electroencephalogram (EEG) signal monitoring. Seizure identification on EEG signals is made manually by epileptologists and this process is usually very long and error prone. The aim of this paper is to describe an automated method able to detect seizures in EEG signals, using knowledge discovery in database process and data mining methods and algorithms, which can support physicians during the seizure detection process. Our detection method is based on Artificial Neural Network classifier, trained by applying the multilayer perceptron algorithm, and by using a software application, called Training Builder that has been developed for the massive extraction of features from EEG signals. This tool is able to cover all the data preparation steps ranging from signal processing to data analysis techniques, including the sliding window paradigm, the dimensionality reduction algorithms, information theory, and feature selection measures. The final model shows excellent performances, reaching an accuracy of over 99% during tests on data of a single patient retrieved from a publicly available EEG dataset.

Keywords: Artificial Neural Network, Data Mining, Electroencephalogram, Epilepsy, Feature Extraction, Seizure Detection, Signal Processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1291
1365 Modeling of Pulsatile Blood Flow in a Weak Magnetic Field

Authors: Chee Teck Phua, Gaëlle Lissorgues

Abstract:

Blood pulse is an important human physiological signal commonly used for the understanding of the individual physical health. Current methods of non-invasive blood pulse sensing require direct contact or access to the human skin. As such, the performances of these devices tend to vary with time and are subjective to human body fluids (e.g. blood, perspiration and skin-oil) and environmental contaminants (e.g. mud, water, etc). This paper proposes a simulation model for the novel method of non-invasive acquisition of blood pulse using the disturbance created by blood flowing through a localized magnetic field. The simulation model geometry represents a blood vessel, a permanent magnet, a magnetic sensor, surrounding tissues and air in 2-dimensional. In this model, the velocity and pressure fields in the blood stream are described based on Navier-Stroke equations and the walls of the blood vessel are assumed to have no-slip condition. The blood assumes a parabolic profile considering a laminar flow for blood in major artery near the skin. And the inlet velocity follows a sinusoidal equation. This will allow the computational software to compute the interactions between the magnetic vector potential generated by the permanent magnet and the magnetic nanoparticles in the blood. These interactions are simulated based on Maxwell equations at the location where the magnetic sensor is placed. The simulated magnetic field at the sensor location is found to assume similar sinusoidal waveform characteristics as the inlet velocity of the blood. The amplitude of the simulated waveforms at the sensor location are compared with physical measurements on human subjects and found to be highly correlated.

Keywords: Blood pulse, magnetic sensing, non-invasive measurement, magnetic disturbance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2600
1364 The Phonology and Phonetics of Second Language Intonation in Case of “Downstep”

Authors: Tayebeh Norouzi

Abstract:

This study aims to investigate the acquisition process of intonation. It examines the intonation structure of Tokyo Japanese and its realization by Iranian learners of Japanese. Seven Iranian learners of Japanese, differing in fluency, and two Japanese speakers participated in the experiment. Two sentences were used to test the phonological and phonetic characteristics of lexical pitch-accent as well as the intonation patterns produced by the speakers. Both sentences consisted of similar words with the same number of syllables and lexical pitch-accents but different syntactic structure. Speakers were asked to read each sentence three times at normal speed, and the data were analyzed by Praat. The results show that lexical pitch-accent, Accentual Phrase (AP) and AP boundary tone realization vary depending on sentence type. For sentences of type XdeYwo, the lexical pitch-accent is realized properly. However, there is a rise in AP boundary tone regardless of speakers’ level of fluency. In contrast, in sentences of type XnoYwo, the lexical pitch-accent and AP boundary tone vary depending on the speakers’ fluency level. Advanced speakers are better at grouping words into phrases and produce more native-like intonation patterns, though they are not able to realize downstep properly. The non-native speakers tried to realize proper intonation patterns by making changes in lexical accent and boundary tone.

Keywords: Intonation, Iranian learners, Japanese prosody, lexical accent, second language acquisition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 967
1363 Probabilistic Wavelet Neural Network Based Vibration Analysis of Induction Motor Drive

Authors: K. Jayakumar, S. Thangavel

Abstract:

In this paper proposed the effective fault detection of industrial drives by using Biorthogonal Posterior Vibration Signal-Data Probabilistic Wavelet Neural Network (BPPVS-WNN) system. This system was focused to reducing the current flow and to identify faults with lesser execution time with harmonic values obtained through fifth derivative. Initially, the construction of Biorthogonal vibration signal-data based wavelet transform in BPPVS-WNN system localizes the time and frequency domain. The Biorthogonal wavelet approximates the broken bearing using double scaling and factor, identifies the transient disturbance due to fault on induction motor through approximate coefficients and detailed coefficient. Posterior Probabilistic Neural Network detects the final level of faults using the detailed coefficient till fifth derivative and the results obtained through it at a faster rate at constant frequency signal on the industrial drive. Experiment through the Simulink tool detects the healthy and unhealthy motor on measuring parametric factors such as fault detection rate based on time, current flow rate, and execution time.

Keywords: Biorthogonal Wavelet Transform, Posterior Probabilistic Neural Network, Induction Motor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1011
1362 Fe3O4 and Fe3O4@Au Nanoparticles: Synthesis and Functionalisation for Biomolecular Attachment

Authors: Hendriëtte van der Walt, Lesley Chown, Richard Harris, Ndabenhle Sosibo, Robert Tshikhudo

Abstract:

The use of magnetic and magnetic/gold core/shell nanoparticles in biotechnology or medicine has shown good promise due to their hybrid nature which possesses superior magnetic and optical properties. Some of these potential applications include hyperthermia treatment, bio-separations, diagnostics, drug delivery and toxin removal. Synthesis refinement to control geometric and magnetic/optical properties, and finding functional surfactants for biomolecular attachment, are requirements to meet application specifics. Various high-temperature preparative methods were used for the synthesis of iron oxide and gold-coated iron oxide nanoparticles. Different surface functionalities, such as 11-aminoundecanoic and 11-mercaptoundecanoic acid, were introduced on the surface of the particles to facilitate further attachment of biomolecular functionality and drug-like molecules. Nanoparticle thermal stability, composition, state of aggregation, size and morphology were investigated and the results from techniques such as Fourier Transform-Infra Red spectroscopy (FT-IR), Ultraviolet visible spectroscopy (UV-vis), Transmission Electron Microscopy (TEM) and thermal analysis are discussed.

Keywords: Core/shell, Iron oxide, Gold coating, Nanoparticles.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2935
1361 Remote Control Software for Rohde and Schwarz Instruments

Authors: Tomas Shejbal, Matej Petkov, Tomas Zalabsky, Jan Pidanic, Zdenek Nemec

Abstract:

The paper describes software for remote control and measuring with new Graphical User Interface for Rohde & Schwarz instruments. Software allows remote control through Ethernet and supports basic and advanced functions for control various type of instruments like network and spectrum analyzers, power meters, signal generators and oscilloscopes. Standard Commands for Programmable Instruments (SCPI) and Virtual Instrument Software Architecture (VISA) are used for remote control and setup of instruments. Developed software is modular with user friendly graphic user interface for each instrument with automatic identification of instruments.

Keywords: Remote control, Rohde&Schwarz, SCPI, VISA, MATLAB, spectum analyzer, network analyzer, oscilloscope, signal generator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5384
1360 Bridge Health Monitoring: A Review

Authors: Mohammad Bakhshandeh

Abstract:

Structural Health Monitoring (SHM) is a crucial and necessary practice that plays a vital role in ensuring the safety and integrity of critical structures, and in particular, bridges. The continuous monitoring of bridges for signs of damage or degradation through Bridge Health Monitoring (BHM) enables early detection of potential problems, allowing for prompt corrective action to be taken before significant damage occurs. Although all monitoring techniques aim to provide accurate and decisive information regarding the remaining useful life, safety, integrity, and serviceability of bridges, understanding the development and propagation of damage is vital for maintaining uninterrupted bridge operation. Over the years, extensive research has been conducted on BHM methods, and experts in the field have increasingly adopted new methodologies. In this article, we provide a comprehensive exploration of the various BHM approaches, including sensor-based, non-destructive testing (NDT), model-based, and artificial intelligence (AI)-based methods. We also discuss the challenges associated with BHM, including sensor placement and data acquisition, data analysis and interpretation, cost and complexity, and environmental effects, through an extensive review of relevant literature and research studies. Additionally, we examine potential solutions to these challenges and propose future research ideas to address critical gaps in BHM.

Keywords: Structural health monitoring, bridge health monitoring, sensor-based methods, machine-learning algorithms, model-based techniques, sensor placement, data acquisition, data analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 219
1359 The Emission Spectra Due to Exciton-Exciton Collisions in GaAs/AlGaAs Quantum Well System

Authors: Surendra K Pandey

Abstract:

Optical emission based on excitonic scattering processes becomes important in dense exciton systems in which the average distance between excitons is of the order of a few Bohr radii but still below the exciton screening threshold. The phenomena due to interactions among excited states play significant role in the emission near band edge of the material. The theory of two-exciton collisions for GaAs/AlGaAs quantum well systems is a mild attempt to understand the physics associated with the optical spectra due to excitonic scattering processes in these novel systems. The four typical processes considered give different spectral shape, peak position and temperature dependence of the emission spectra. We have used the theory of scattering together with the second order perturbation theory to derive the radiative power spontaneously emitted at an energy ħω by these processes. The results arrived at are purely qualitative in nature. The intensity of emitted light in quantum well systems varies inversely to the square of temperature, whereas in case of bulk materials it simply decreases with the  temperature.

Keywords: Exciton-Exciton Collisions, Excitonic Scattering Processes, Interacting Excitonic States, Quantum Wells.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1426
1358 Comparing Autoregressive Moving Average (ARMA) Coefficients Determination using Artificial Neural Networks with Other Techniques

Authors: Abiodun M. Aibinu, Momoh J. E. Salami, Amir A. Shafie, Athaur Rahman Najeeb

Abstract:

Autoregressive Moving average (ARMA) is a parametric based method of signal representation. It is suitable for problems in which the signal can be modeled by explicit known source functions with a few adjustable parameters. Various methods have been suggested for the coefficients determination among which are Prony, Pade, Autocorrelation, Covariance and most recently, the use of Artificial Neural Network technique. In this paper, the method of using Artificial Neural network (ANN) technique is compared with some known and widely acceptable techniques. The comparisons is entirely based on the value of the coefficients obtained. Result obtained shows that the use of ANN also gives accurate in computing the coefficients of an ARMA system.

Keywords: Autoregressive moving average, coefficients, back propagation, model parameters, neural network, weight.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2278
1357 Improving Multi-storey Building Sensor Network with an External Hub

Authors: Malka N. Halgamuge, Toong-Khuan Chan, Priyan Mendis

Abstract:

Monitoring and automatic control of building environment is a crucial application of Wireless Sensor Network (WSN) in which maximizing network lifetime is a key challenge. Previous research into the performance of a network in a building environment has been concerned with radio propagation within a single floor. We investigate the link quality distribution to obtain full coverage of signal strength in a four-storey building environment, experimentally. Our results indicate that the transitional region is of particular concern in wireless sensor network since it accommodates high variance unreliable links. The transitional region in a multi-storey building is mainly due to the presence of reinforced concrete slabs at each storey and the fac┬©ade which obstructs the radio signal and introduces an additional absorption term to the path loss.

Keywords: Wireless sensor networks, radio propagation, building monitoring

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1536
1356 BPNN Based Processing for End Effects of HHT

Authors: Chun-Yao Lee, Yao-chen Lee

Abstract:

This paper describes a method of signal process applied on an end effects of Hilbert-Huang transform (HHT) to provide an improvement in the reality of spectrum. The method is based on back-propagation network (BPN). To improve the effect, the end extension of the original signal is obtained by back-propagation network. A full waveform including origin and its extension is decomposed by using empirical mode decomposition (EMD) to obtain intrinsic mode functions (IMFs) of the waveform. Then, the Hilbert transform (HT) is applied to the IMFs to obtain the Hilbert spectrum of the waveform. As a result, the method is superiority of the processing of end effect of HHT to obtain the real frequency spectrum of signals.

Keywords: Neural network, back-propagation network, Hilbert-Huang transform

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1778
1355 Centralized Monitoring and Self-protected against Fiber Fault in FTTH Access Network

Authors: Mohammad Syuhaimi Ab-Rahman, Boonchuan Ng, Kasmiran Jumari

Abstract:

This paper presented a new approach for centralized monitoring and self-protected against fiber fault in fiber-to-the-home (FTTH) access network by using Smart Access Network Testing, Analyzing and Database (SANTAD). SANTAD will be installed with optical line terminal (OLT) at central office (CO) for in-service transmission surveillance and fiber fault localization within FTTH with point-to-multipoint (P2MP) configuration downwardly from CO towards customer residential locations based on the graphical user interface (GUI) processing capabilities of MATLAB software. SANTAD is able to detect any fiber fault as well as identify the failure location in the network system. SANTAD enable the status of each optical network unit (ONU) connected line is displayed onto one screen with capability to configure the attenuation and detect the failure simultaneously. The analysis results and information will be delivered to the field engineer for promptly actions, meanwhile the failure line will be diverted to protection line to ensure the traffic flow continuously. This approach has a bright prospect to improve the survivability and reliability as well as increase the efficiency and monitoring capabilities in FTTH.

Keywords: Fiber fault, FTTH, SANTAD, transmission surveillance, MATLAB.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2535
1354 Introduction of the Harmfulness of the Seismic Signal in the Assessment of the Performance of Reinforced Concrete Frame Structures

Authors: Kahil Amar, Boukais Said, Kezmane Ali, Hamizi Mohand, Hannachi Naceur Eddine

Abstract:

The principle of the seismic performance evaluation methods is to provide a measure of capability for a building or set of buildings to be damaged by an earthquake. The common objective of many of these methods is to supply classification criteria. The purpose of this study is to present a method for assessing the seismic performance of structures, based on Pushover method; we are particularly interested in reinforced concrete frame structures, which represent a significant percentage of damaged structures after a seismic event. The work is based on the characterization of seismic movement of the various earthquake zones in terms of PGA and PGD that is obtained by means of SIMQK_GR and PRISM software and the correlation between the points of performance and the scalar characterizing the earthquakes will developed.

Keywords: Seismic performance, Pushover method, characterization of seismic motion, harmfulness of the seismic signal

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2040
1353 Monitoring of Spectrum Usage and Signal Identification Using Cognitive Radio

Authors: O. S. Omorogiuwa, E. J. Omozusi

Abstract:

The monitoring of spectrum usage and signal identification, using cognitive radio, is done to identify frequencies that are vacant for reuse. It has been established that ‘internet of things’ device uses secondary frequency which is free, thereby facing the challenge of interference from other users, where some primary frequencies are not being utilised. The design was done by analysing a specific frequency spectrum, checking if all the frequency stations that range from 87.5-108 MHz are presently being used in Benin City, Edo State, Nigeria. From the results, it was noticed that by using Software Defined Radio/Simulink, we were able to identify vacant frequencies in the range of frequency under consideration. Also, we were able to use the significance of energy detection threshold to reuse this vacant frequency spectrum, when the cognitive radio displays a zero output (that is decision H0), meaning that the channel is unoccupied. Hence, the analysis was able to find the spectrum hole and identify how it can be reused.

Keywords: Spectrum, interference, telecommunication, cognitive radio, frequency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 847
1352 Proposed Alternative System to Existing Traffic Signal System

Authors: Alluri Swaroopa, Lakkakula Venkata Narasimha Prasad

Abstract:

Alone with fast urbanization in world, traffic control became a big issue in urban construction. Having an efficient and reliable traffic control system is crucial to macro-traffic control. Traffic signal is used to manage conflicting requirement by allocating different sets of mutually compatible traffic movement during distinct time interval. Many approaches have been made proposed to solve this discrete stochastic problem. Recognizing the need to minimize right-of-way impacts while efficiently handling the anticipated high traffic volumes, the proposed alternative system gives effective design. This model allows for increased traffic capacity and reduces delays by eliminating a step in maneuvering through the freeway interchange. The concept proposed in this paper involves construction of bridges and ramps at intersection of four roads to control the vehicular congestion and to prevent traffic breakdown.

Keywords: Bridges, junctions, ramps, urban traffic control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3167
1351 Evaluation of GSM Radiation Power Density in Three Major Cities in Nigeria

Authors: B. O. Ayinmode, I. P. Farai

Abstract:

The levels of maximum power density of GSM signals in the cities of Lagos, Ibadan and Abuja were studied. Measurements were made with a calibrated hand held spectrum analyzer 200m away from 271 base stations, at 1.2m to the ground level. The maximum GSM 900 signal power density was 139.63μW/m2 in Lagos, 162.49μW/m2 in Ibadan and 5411.26μW/m2 in Abuja. Also, the maximum GSM 1800 signal power density was 296.82μW/m2 in Lagos, 116.82μW/m2 in Ibadan and 1263.00μW/m2 in Abuja. The level of power density of GSM 900 and GSM 1800 signals in the cities of Lagos, Ibadan and Abuja are far less than the recommended value of 4.5W/m2 for GSM 900 and 9.0 W/m2 for GSM 1800 by the ICNRP guideline. It can be concluded that exposure to GSM signals in these cities cannot contribute to the health detriments caused by thermal effects of radiofrequency radiation.

Keywords: Radiofrequency, power density, radiation exposure, base stations (BTS).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2543
1350 Recognition by Online Modeling – a New Approach of Recognizing Voice Signals in Linear Time

Authors: Jyh-Da Wei, Hsin-Chen Tsai

Abstract:

This work presents a novel means of extracting fixedlength parameters from voice signals, such that words can be recognized in linear time. The power and the zero crossing rate are first calculated segment by segment from a voice signal; by doing so, two feature sequences are generated. We then construct an FIR system across these two sequences. The parameters of this FIR system, used as the input of a multilayer proceptron recognizer, can be derived by recursive LSE (least-square estimation), implying that the complexity of overall process is linear to the signal size. In the second part of this work, we introduce a weighting factor λ to emphasize recent input; therefore, we can further recognize continuous speech signals. Experiments employ the voice signals of numbers, from zero to nine, spoken in Mandarin Chinese. The proposed method is verified to recognize voice signals efficiently and accurately.

Keywords: Speech Recognition, FIR system, Recursive LSE, Multilayer Perceptron

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1402
1349 High Performance Electrocardiogram Steganography Based on Fast Discrete Cosine Transform

Authors: Liang-Ta Cheng, Ching-Yu Yang

Abstract:

Based on fast discrete cosine transform (FDCT), the authors present a high capacity and high perceived quality method for electrocardiogram (ECG) signal. By using a simple adjusting policy to the 1-dimentional (1-D) DCT coefficients, a large volume of secret message can be effectively embedded in an ECG host signal and be successfully extracted at the intended receiver. Simulations confirmed that the resulting perceived quality is good, while the hiding capability of the proposed method significantly outperforms that of existing techniques. In addition, our proposed method has a certain degree of robustness. Since the computational complexity is low, it is feasible for our method being employed in real-time applications.

Keywords: Data hiding, ECG steganography, fast discrete cosine transform, 1-D DCT bundle, real-time applications.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 796
1348 On the Effectivity of Different Pseudo-Noise and Orthogonal Sequences for Speech Encryption from Correlation Properties

Authors: V. Anil Kumar, Abhijit Mitra, S. R. Mahadeva Prasanna

Abstract:

We analyze the effectivity of different pseudo noise (PN) and orthogonal sequences for encrypting speech signals in terms of perceptual intelligence. Speech signal can be viewed as sequence of correlated samples and each sample as sequence of bits. The residual intelligibility of the speech signal can be reduced by removing the correlation among the speech samples. PN sequences have random like properties that help in reducing the correlation among speech samples. The mean square aperiodic auto-correlation (MSAAC) and the mean square aperiodic cross-correlation (MSACC) measures are used to test the randomness of the PN sequences. Results of the investigation show the effectivity of large Kasami sequences for this purpose among many PN sequences.

Keywords: Speech encryption, pseudo-noise codes, maximallength, Gold, Barker, Kasami, Walsh-Hadamard, autocorrelation, crosscorrelation, figure of merit.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2028
1347 Brain MRI Segmentation and Lesions Detection by EM Algorithm

Authors: Mounira Rouaïnia, Mohamed Salah Medjram, Noureddine Doghmane

Abstract:

In Multiple Sclerosis, pathological changes in the brain results in deviations in signal intensity on Magnetic Resonance Images (MRI). Quantitative analysis of these changes and their correlation with clinical finding provides important information for diagnosis. This constitutes the objective of our work. A new approach is developed. After the enhancement of images contrast and the brain extraction by mathematical morphology algorithm, we proceed to the brain segmentation. Our approach is based on building statistical model from data itself, for normal brain MRI and including clustering tissue type. Then we detect signal abnormalities (MS lesions) as a rejection class containing voxels that are not explained by the built model. We validate the method on MR images of Multiple Sclerosis patients by comparing its results with those of human expert segmentation.

Keywords: EM algorithm, Magnetic Resonance Imaging, Mathematical morphology, Markov random model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2150
1346 Semi Classical Three-Valley Monte Carlo Simulation Analysis of Steady-State and Transient Electron Transport within Bulk Ga0.38In0.62P

Authors: N. Massoum, B. Bouazza, H. Tahir, C. Sayah, A. Guen Bouazza

Abstract:

to simulate the phenomenon of electronic transport in semiconductors, we try to adapt a numerical method, often and most frequently it’s that of Monte Carlo. In our work, we applied this method in the case of a ternary alloy semiconductor GaInP in its cubic form; The Calculations are made using a non-parabolic effective-mass energy band model. We consider a band of conduction to three valleys (ΓLX), major of the scattering mechanisms are taken into account in this modeling, as the interactions with the acoustic phonons (elastic collisions) and optics (inelastic collisions). The polar optical phonons cause anisotropic collisions, intra-valleys, very probable in the III-V semiconductors. Other optical phonons, no polar, allow transitions inter-valleys. Initially, we present the full results obtained by the simulation of Monte Carlo in GaInP in stationary regime. We consider thereafter the effects related to the application of an electric field varying according to time, we thus study the transient phenomenon which make their appearance in ternary material

Keywords: Monte Carlo simulation, steady-state electron transport, transient electron transport, alloy scattering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1756
1345 Low Complexity Hybrid Scheme for PAPR Reduction in OFDM Systems Based on SLM and Clipping

Authors: V. Sudha, D. Sriram Kumar

Abstract:

In this paper, we present a low complexity hybrid scheme using conventional selective mapping (C-SLM) and clipping algorithms to reduce the high peak-to-average power ratio (PAPR) of orthogonal frequency division multiplexing (OFDM) signal. In the proposed scheme, the input data sequence (X) is divided into two sub-blocks, then clipping algorithm is applied to the first sub-block, whereas C-SLM algorithm is applied to the second sub-block in order to reduce both computational complexity and PAPR. The resultant time domain OFDM signal is obtained by combining the output of two sub-blocks. The simulation results show that the proposed hybrid scheme provides 0.45 dB PAPR reduction gain at CCDF value of 10-2 and 52% of computational complexity reduction when compared to C-SLM scheme at the expense of slight degradation in bit error rate (BER) performance.

Keywords: CCDF, Clipping, OFDM, PAPR, SLM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1252
1344 EPR Hiding in Medical Images for Telemedicine

Authors: K. A. Navas, S. Archana Thampy, M. Sasikumar

Abstract:

Medical image data hiding has strict constrains such as high imperceptibility, high capacity and high robustness. Achieving these three requirements simultaneously is highly cumbersome. Some works have been reported in the literature on data hiding, watermarking and stegnography which are suitable for telemedicine applications. None is reliable in all aspects. Electronic Patient Report (EPR) data hiding for telemedicine demand it blind and reversible. This paper proposes a novel approach to blind reversible data hiding based on integer wavelet transform. Experimental results shows that this scheme outperforms the prior arts in terms of zero BER (Bit Error Rate), higher PSNR (Peak Signal to Noise Ratio), and large EPR data embedding capacity with WPSNR (Weighted Peak Signal to Noise Ratio) around 53 dB, compared with the existing reversible data hiding schemes.

Keywords: Biomedical imaging, Data security, Datacommunication, Teleconferencing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2734