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Abstract—Autoregressive Moving average (ARMA) is a paramet-
ric based method of signal representation. It is suitable for problems
in which the signal can be modeled by explicit known source
functions with a few adjustable parameters. Various methods have
been suggested for the coefficients determination among which are
Prony, Pade, Autocorrelation, Covariance and most recently, the use
of Artificial Neural Network technique.

In this paper, the method of using Artificial Neural network (ANN)
technique is compared with some known and widely acceptable
techniques. The comparisons is entirely based on the value of the
coefficients obtained. Result obtained shows that the use of ANN also
gives accurate in computing the coefficients of an ARMA system.

Keywords—Autoregressive Moving Average, Coefficients, Back
Propagation, Model Parameters, Neural Network, Weight.

I. INTRODUCTION

The use of modeling technique to predict or reconstruct a

data sequence is concerned with the representation of data in

an efficient technique [1]–[4], [6], [10], [13]. Signal modeling

have been used in radar application, geophysical application,

Medical signal processing, ultrasonic tissue backscatter coeffi-

cient estimation, speech processing, music understanding and

more recently in the field of Magnetic Resonance Imaging

(MRI) reconstruction [2], [4], [6], [10], [13], [14], [16], [17].

Signal modeling involves two steps steps [2], these are;

1) Model selection: Choosing an appropriate parametric

form for the model data

2) Model Parameter determination: This include model

order and model coefficients determination.

Despite the success reported in the use of modeling tech-

nique, two important problems constitutes challenges to the

applicability of this method, these are:

1) Estimation of Model order: There have been various

effort in determining a workable criteria for the determi-

nation of an appropriate model order. The use of a model

with an order too high over fits the data while the use of

a model with a low order leads to insensitivity to noise

[2], [4], [6], [15].

2) Estimation of model coefficient : The second impor-

tant challenges mitigating against the use of modeling
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technique is the estimation of the model coefficients.

Some of the existing methods of determining model

coefficients includes Prony, Pade, Least Square, Shank,

Autocorrelation, Autocovariance methods [9].

The organization of this paper is as follows, section I gives

a brief and concise introduction to signal modeling and its

associated challenges. In section II, some of the variations or

types of modeling will be discussed while section III gives

brief introduction to various methods of estimating model

coefficients. In section IV, the detail of using Neural network

reported in [7], [8] will be discussed. Section V will discuss

the result obtained while the conclusion is as presented in

section VI.

II. SIGNAL MODELING TYPES

Some of the known modeling methods include:

• Autoregressive modeling Technique (AR): Consider a

system describe by a linear constant coefficient difference

equation (LCCDE) given by (1), the output y(n) is

obtained by using only previous outputs i.e y(n − 1),
y(n − 2), y(n − 3) . . . y(n − p)and the current input i.e

x(n), which means that b(k) = 0 for k > 0 and only a(k)
and b(0) must be determined, such a system are called

Autoregressive (AR) model.

AR model equation is given

y(n) = −

p∑

k=1

aky(n − k) + b(0)x(n) (1)

and the equivalent z-domain is

Y (z) = −

p∑

k=1

akY (z)z−k + b(0)X(z) (2)

H(z) =
Y (z)

X(z)
=

b(0)

1 +
p∑

k=1

akz−k

(3)

• Autoregressive with external input(s) modeling Tech-

nique (ARX): From (4), the output y(n) is given by

y(n) = −

p∑

k=1

aky(n − k) + b(0)x(n) (4)

adding an external input yields
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y(n) = −

p∑

k=1

aky(n − k) + b(0)x(n) +
r∑

k=1

cku(n − k)

(5)

taking z-transform of both sides results in

Y (z) = −

p∑

k=1

akY (z)z−k + b(0)X(z) +
r∑

k=1

ckU(z)z−k

(6)

• Autoregressive moving Average (ARMA) modeling

technique

The general ARMA equation is given by

y(n) = −

p∑

k=1

aky(n − k) +

q∑

k=0

bkx(n − k) (7)

taking z-transform of both sides results in

Y (z) = −

p∑

k=1

akY (z)z−k +

q∑

k=0

bkX(z)z−k (8)

so that

H(z) =
Y (z)

X(z)
=

q∑
k=0

bkz
−k

1 +
p∑

k=1

akz−k

(9)

in which

X(z) =

∞∑

k=−∞

x(n)z−n (10)

and

Y (z) =
∞∑

k=−∞

y(n)z−n (11)

• Autoregressive moving Average with external input(s)

(ARMAX) modeling technique

The general ARMA equation is given by 12,i.e

y(n) = −

p∑

k=1

aky(n − k) +

q∑

k=0

bkx(n − k) (12)

the addition of external input to the system results in

y(n) = −

p∑

k=1

aky(n−k)+

q∑

k=0

bkx(n−k)+

r∑

k=1

cku(n−k)

(13)

taking z-transform of both sides results in

Y (z) = −

p∑

k=1

akY (z)z−k+

q∑

k=0

bkX(z)z−k+
r∑

k=1

ckU(z)z−k

(14)

other known modeling techniques include

• Autoregressive Integrated Moving Model (ARIMA)

• Autoregressive Integrated Moving with external input

Model (ARIMAX)

• Autoregressive Fractionally Integrated Moving Model

(AFRIMA)

In this report, The general ARMA given by eqn. 12 will be

discussed and the relationship between AR, MA and ARMA

Fig. 1. Direct Method of least square method of ARMA Model

modeling techniques is as contained in the Wold decompo-

sition theorem [12]. This theorem shows that any stationary

ARMA or MA process of finite variance can be represented as

a unique AR process of possibly infinite order; likewise any

ARMA or AR process can be represented as a MA process of

possibly infinite order [12].

III. METHODS OF COEFFICIENTS DETERMINATION

Various methods have been reported in literatures for deter-

mining the AR/ARMA model coefficients, among which are:

A. Direct least square method

The block diagram for direct method of least square solution

is as shown in fig. 1 The modeling error can be written as

e(n) = x(n) − h(n)

in Frequency domain, we have

E(ejω) = X(ejω) −
Bq(e

jω)

Ap(ejω)
(15)

In this method, the signal modeling to be minimized is the

squared error,

ξls =
∞∑

n=0

|e(n)|2

A necessary condition for the coefficients ap(k) and bq(k)
to minimize the error is that the partial derivative of ξls with

respect to each of the coefficients vanishes. i.e

δξls

δa∗

p(k)
= 0; k = 1, 2, . . . , p

δξls

δb∗p(k)
= 0; k = 1, 2, . . . , q

Using Parseval’s theorem and taking the fourier transform of

the error e(n), we have

ξls =
1

2π

∫ π

−π

|E(ejω)|2dω (16)

δξls

δa∗

p(k)
=

1

2π

∫ π

−π

δ

δa∗

p(k)
[E(ejω)E∗(ejω)]dω = 0 (17)

substituting (15) to (17), gives

δξls

δa∗

p(k)
=

1

2π

∫ π

−π

[X(ejω)−
Bq(e

jω)

Ap(ejω)
]

B
∗

q (ejω)

[A∗

p(e
jω)]2

e
jkω

dω = 0

(18)

and
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δξls

δb∗q(k)
= −

1

2π

∫ π

−π

[X(ejω) −
Bq(e

jω)

Ap(ejω)
]

e
jkω

A∗

p(e
jω)

dω = 0

(19)

B. Pade Approximation

The Pade approximation can be developed using fig. 1. The

system function is

H(z) =
Bq(z)

Aq(z)
=

q∑
k=0

bqz
−k

1 +
p∑

k=1

apz
−k

which leads to the difference equation

h(n) +

q∑

k=1

ap(k)h(n − k) = bq(n) (20)

setting h(n) = x(n) for n = 0, 1, 2 . . . , p + q in (20) yields

a set of p + q + 1 linear equations in p + q + 1 unknowns,

given by

h(n)+

q∑

k=1

ap(k)h(n−k) =

{
bq(n) n = 1, 2, . . . , q

0 n = q + 1, . . . q + p

}

(21)

C. Prony method

Multiplying both sides of (15) by Ap(z) yields

E(z) = ApE
′(z) − Bq(z)

in time domain,

e(n) = ap(n) ∗ x(n) − bq(n) = b̄q(n) − bq(n), (22)

since bq(n) = 0 for n > q, then,

e(n) =






x(n) +
p∑

l=1

ap(l)x(n − l) − bq(n) n = 1, 2, . . . , q

x(n) +
p∑

l=1

ap(l)x(n − l) n = n > q





(23)

ξls =

∞∑

n=0

|e(n)|2 =
∞∑

n=0

|x(n) +

p∑

l=1

ap(l)x(n − l)|2 (24)

setting the partial derivatives of ξls with respect to a
∗

p(k) equal

to zero, gives

δξp,q

δa∗

p(k)
=

∞∑

n=q+1

δ[e(n)e∗(n)]

δa∗

p(k)
=

∞∑

n=q+1

e(n)
δe

∗(n)

δa∗

p(k)
= 0

(25)

δξp,q

δa∗

p(k)
=

∞∑

n=q+1

e(n)x∗(n − k) = 0 k = 1, 2, . . . p (26)

Fig. 2. Method of Prony Method

substituting eqn. (23) in eqn. (26),

∞∑

n=q+1

(x(n) +

p∑

l=1

ap(l)x(n − l))x∗(n − k) = 0 (27)

or equivalently,

p∑

l=1

ap(l)[
∞∑

n=q+1

(x(n−l)x∗(n−k)] = −
∞∑

n=q+1

(x(n)x∗(n−k)]

(28)

becomes

p∑

l=1

ap(l)rx(k, l) = −rx(k, 0); k = 1, 2 . . . , p (29)

where

rx(k, l) =
∞∑

n=q+1

(x(n − l)x∗(n − k)

D. Shank method (Modified Prony)

Shank method is a modified Prony method in the sense

that the moving average coefficients is obtained by finding the

least square minimization of the model error over the entire

data length [9]. The model can be viewed as a cascade of two

filters, Bq(z) and Ap(z)
The combine transfer function is given by,

H(z) = Bq(z)
1

Ap(z)

The output of y(n) can be computed using

g(n) = δ(n) −

p∑

l=1

ap(k)g(n − k)

The numerator coefficient is obtained by minimizing the

square of the error.

ξS =
∞∑

n=0

|e(n)|2

minimizing the error in Prony method gives

q∑

l=0

bp(l)ry(k, l) = rxy(k); k = 1, 2 . . . , q (30)

where

ry(k − l) =
∞∑

n=0

(y(n − l)y∗(n − k)
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and

rxy(k) =
∞∑

n=0

(x(n)y∗(n − k)

The block diagram for Shank’s method is as shown in fig.

3

Fig. 3. Method of Shank method

E. Autocorrelation method

In this method, the signal x(n) is only known over a finite

data sequence [0, N ], this is obtained by multiplying an infinite

data sequence by a window function w(n) to obtain another

signal x
′(n). i.e

x
′(n) =

{
s(n)w(n) 0 ≤ n ≤ N − 1

0 otherwise

}
(31)

Using Prony’s method to find an all pole model for x
′(n)

by minimizing ap(k) coefficients as stated in (26), (28), (29),

yields

p∑

l=1

ap(l)rx(k, l) = −rx(k, 0); k = 1, 2 . . . , p (32)

where

rx(k) =
N∑

n=k

x(n)x∗(n − k)

The autocorrelation matrix formed is a symmetric Toeplitz

matrix.

F. Covariance method

In contrast to Autocorrelation method discussed in section

III-E, the error in (24) is minimized over a definite interval

[p,N ] , that is

ξ
C
p =

N∑

n=p

|e(n)|2 (33)

The only difference between covariance method and Prony

method is in the summation of the error term [9], the covari-

ance normal equations can be written as

p∑

l=1

ap(l)rx(k, l) = −rx(k, 0); k = 1, 2 . . . , p (34)

where

rx(k, l) =
N∑

n=p

(x(n − l)x∗(n − k)

IV. AR/ARMA COEFFICIENTS DETERMINATION USING

ARTIFICIAL NEURAL NETWORK TECHNIQUE

The general three layer neural network of obtaining the

coefficients of ARMA and NARMA reported in [7], [8] is

as shown in figure 4

Fig. 4. Neural Network Technique for obtaining ARMA/NARMA coeffi-
cients. [7], [8]

For a system define by,

y(n) = −

p∑

k=1

aky(n − k) +

q∑

k=0

bkx(n − k) (35)

the coefficients are obtained from the neural network

weights value and polynomial coefficients given by eq. 54 and

eq. 55.

ai =
M∑

j=1

wj1a1jvijy(n − i) (36)

bi =

M∑

j=1

wj1a1jvijx(n − i) (37)

A. ARMA-ANN Coefficients determination Algorithm

1) Stopping criteria:

Set the stopping criteria; Epoch or Mean Square Error

(MSE)

2) Initialize:

Number of input nodes equal model order. i.e (Input

nodes = p + q)

Output node is one(1), y(n)
Initialize the weight vectors

Intialize Polynomial Order, R (R=2)

Intialize all Polynomial coefficients,azi where

Pi(t) =
R∑

z=0

azit
z (38)

3) Training Pattern :

Select the training input and output pairs for the network.
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Input pattern, AR section: y(n−1), y(n−2), . . . y(n−p)
Input pattern, MA section: x(n), x(n − 1), . . . x(n − q)
Target pattern, T (n)

4) Run selected pattern

The output node y(n) is given by,

y(n) =

M∑

k=1

wk1hi(t) (39)

and the hidden nodes output is given as,

hi(t) =
R∑

z=0

azit
z (40)

where the AR part is given by

t(n) =

p∑

j=1

vk1yi(n − j) + φ(j) (41)

5) Evaluate the Error

The output Error is

δ(n) = T (n) − y(n) (42)

6) Back Propagate the Error

δk(n) = wk ∗ δ(n) (43)

7) Weight Update (Input to Hidden layer)

vjk(new) = vjk(old) + ηδk

δPk(t)

δt
y(n − j) (44)

where

δPk

δt
=

2∑

b=1

babkt
(b−1) (45)

8) Polynomial Coefficient Update (Hidden layer)

ajknew = ajkold + ηδ1

δPi

δajk

(46)

where

δPi

δa0i

= 1 (47)

δPi

δa1i

= ti (48)

δPi

δa2i

= t
2

i (49)

(50)

which can be simply put as

δPi

δari

= t
r
i (51)

for r = 0, 1 and 2 , i is the hidden layer number and ti

is as defined in 41 for the AR section.

9) Weight Update (Hidden layer to Output Layer)

wk1new = wk1old + ηδ
δPk

δt
Pk (52)

For Output neuron, the activation function is P (t) = t

so the derivative δP1

δt
= δP2

δt
= 1.

So,

wk(new) = wk(old) + ηδPk (53)

10) Test for Stopping criteria:

Test for stopping criteria.

If completion criteria is not satisfied, go to step 4 else

calculate and output the ARMA coefficients

ai =
M∑

j=1

wj1a1jvijy(n − j) (54)

bi =
M∑

j=1

wj1a1jvijx(n − j) (55)

11) Ends

V. RESULT OBTAINED

In this paper, results obtained by the use of Pade, Prony

Shank, Autocorrelation and Covariance method coefficients

determination types will be reported.

1) Autoregressive Equation 1

y(n) = y(n − 1) + 0.24y(n − 2) + w(n) (56)

where w(n) is white noise.

2) Autoregressive Equation 2

y(n) = 0.51y(n − 1) + 0.315y(n − 2) − 0.23y(n − 3)

−0.56y(n − 4) + 0.1y(n − 5) − 0.045y(n − 6) + w(n)

where w(n) is white noise.

3) Autoregressive Moving Average

y(n) = 0.11y(n − 1) + 0.52y(n − 2)

+x(n) − 0.3x(n − 1) − 0.078x(n − 2)

TABLE I
RESULT OBTAINED FROM EQN. 56

Methods a(1) a(2)
Actual Value 1.000 0.240

Pade 0.670 0.203
Prony 0.833 0.215
Shank 0.872 0.233

Autocorrelation 0.903 0.240
Autocovariance 1.001 0.240

NN 1.000 0.241

TABLE II
RESULT OBTAINED FROM EQN. 57

Methods a(1) a(2) a(3) a(4) a(5) a(6)

Actual Value 0.510 0.315 −0.230 −0.560 0.100 −0.045

Pade 0.704 0.033 −0.202 −0.167 0.488 −0.279
Prony 0.504 0.331 −0.202 −0.667 0.188 −0.178
Shank 0.513 0.331 −0.202 −0.668 0.103 −0.179

Autocorrelation 0.530 0.285 −0.202 −0.667 0.089 −0.179
Autocovariance 0.510 0.322 −0.230 −0.561 0.104 −0.046

NN 0.510 0.314 −0.230 −0.560 0.102 −0.045
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TABLE III
RESULT OBTAINED FROM EQN. 57

Methods a(1) a(2) b(1) b(2) b(3)

Actual Value 0.110 −0.500 0.411 −0.390 −0.685

Pade 0.421 −0.341 0.223 −0.219 −0.355
Prony 0.221 −0.600 0.366 −0.431 −0.534
Shank 0.221 −0.5980 0.380 −0.439 −0.534

Autocorrelation 0.121 −0.631 0.372 −0.343 −0.639
Autocovariance 0.111 −0.500 0.411 −0.390 −0.680

NN 0.110 −0.500 0.411 −0.390 −0.685

VI. CONCLUSION

In this paper, different methods of determining ARMA

coefficients have been evaluated based on a simulated data.

An algorithm in achieving the reported methods in [7], [8]

have also been discussed. MATLAB implementation of this

have also been carried out . This work only consider the

accuracy of the coefficients and not the time of completion of

each of the method. Result obtained shows that this method

efficiently and accurately compute ARMA coefficients. Result

obtained also shows that the result perform better than some of

the existing method of ARMA coefficient beacuse of the non

linearity nature of ANN. Area of application of this proposed

algorithm include Magnetic Resonance Imaging reconstruction

using parametric technique [4], Signal modeling, Adaptive

control system and PID tunning.
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