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Abstract—Structural Health Monitoring (SHM) is a crucial and 

necessary practice that plays a vital role in ensuring the safety and 
integrity of critical structures, and in particular, bridges. The 
continuous monitoring of bridges for signs of damage or degradation 
through Bridge Health Monitoring (BHM) enables early detection of 
potential problems, allowing for prompt corrective action to be taken 
before significant damage occurs. Although all monitoring techniques 
aim to provide accurate and decisive information regarding the 
remaining useful life, safety, integrity, and serviceability of bridges, 
understanding the development and propagation of damage is vital for 
maintaining uninterrupted bridge operation. Over the years, extensive 
research has been conducted on BHM methods, and experts in the field 
have increasingly adopted new methodologies. In this article, we 
provide a comprehensive exploration of the various BHM approaches, 
including sensor-based, non-destructive testing (NDT), model-based, 
and artificial intelligence (AI)-based methods. We also discuss the 
challenges associated with BHM, including sensor placement and data 
acquisition, data analysis and interpretation, cost and complexity, and 
environmental effects, through an extensive review of relevant 
literature and research studies. Additionally, we examine potential 
solutions to these challenges and propose future research ideas to 
address critical gaps in BHM. 
 

Keywords—Structural health monitoring, bridge health 
monitoring, sensor-based methods, machine-learning algorithms, 
model-based techniques, sensor placement, data acquisition, data 
analysis. 

I. INTRODUCTION 

N the quest for safer and more resilient structures, the 
significance of BHM cannot be overstated. This powerful 

tool leverages state-of-the-art sensors, data acquisition systems, 
and cutting-edge analysis techniques to meticulously detect, 
locate, and quantify any signs of structural damage. With its 
ability to extend the service life of critical infrastructure and 
reduce maintenance costs, BHM has emerged as a game-
changing technology in recent years [1]. BHM's monitoring 
arsenal is impressively diverse, featuring an array of 
sophisticated techniques such as acoustic emission, thermal 
imaging, ultrasonic testing, and strain measurement. As a result, 
BHM is widely recognized as a reliable means of assessing the 
health of bridges and detecting any flaws or defects before they 
escalate into serious threats [2]. As essential components of 
modern transportation networks, bridges play an irreplaceable 
role in ensuring the smooth and efficient movement of people 
and goods. Therefore, it is imperative to monitor their health 
regularly to ensure their safety and longevity. That is where 
BHM comes in, providing an indispensable tool for achieving 
this objective. By harnessing the power of sensors, data 
acquisition systems, and advanced analysis methods, BHM 
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detects, locates, and evaluates the extent of any structural 
damage in bridges, enabling engineers and researchers to take 
corrective measures before any significant harm occurs [3]. 

While bridge BHM offers various potential benefits, its 
implementation presents several challenges that must be 
addressed. These challenges encompass a range of issues, such 
as sensor selection and installation, data management and 
analysis, communication infrastructure, and maintenance and 
repair costs. Effective implementation of bridge BHM requires 
collaboration among different stakeholders, including 
policymakers, engineers, and researchers [4]. Technological 
advancements have given rise to new and innovative techniques 
for bridge BHM, such as fiber-optic sensors, wireless sensor 
networks, unmanned aerial vehicles (UAVs), and remote 
sensing. These techniques offer numerous benefits, including 
real-time monitoring, high accuracy, and access to hard-to-
reach areas of the bridge [5]. Long-term performance 
monitoring is critical in ensuring the integrity of bridges. This 
involves monitoring the behavior of bridges over an extended 
period to detect any changes in their structural condition. Long-
term monitoring can help to identify the causes of deterioration 
and develop effective maintenance and repair strategies. 
Advanced monitoring techniques like wireless sensor networks 
and remote sensing can provide continuous and real-time 
monitoring of bridge performance, thus ensuring early 
detection of any structural changes [6]. 

 BHM is a crucial practice that ensures the safety and 
longevity of bridges. It involves the use of advanced 
technologies and techniques to keep a watchful eye on the 
structural integrity of the bridge and detect any changes that 
may signal potential problems. By continuously monitoring the 
performance of the bridge, engineers can take proactive 
measures to prevent significant damage, reduce maintenance 
costs, and extend the lifespan of the structure [7]. 

The use of sensors is one of the key components of BHM. 
These sensors can be placed on the bridge to collect data on 
various parameters such as displacement, strain, and 
temperature. Through continuous measurement and analysis of 
these data, the sensors can detect even the slightest changes that 
may indicate structural issues, such as cracks or deformation. 
This information can then be relayed to a central monitoring 
system, where experts can take appropriate action [8]. 

In addition to sensors, visual inspections play an important 
role in BHM. Experienced inspectors carefully examine the 
bridge for any signs of wear or damage, such as cracks or 
corrosion. These inspections can uncover potential issues that 
may not be detectable through sensors, making them a valuable 
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tool for maintaining the safety of the bridge. Regular visual 
inspections can identify problems early on, which helps to 
prevent costly repairs or even catastrophic failures [9]. 

To complement sensors and visual inspections, other NDT 
methods such as ultrasonic testing and magnetic particle 
inspection can also be used to detect internal defects in the 
bridge structure. These methods are particularly useful in 
detecting defects that may not be visible during a visual 
inspection. By utilizing a combination of techniques, engineers 
can ensure that they have a comprehensive understanding of the 
structural health of the bridge [10]. 

Overall, BHM is a critical process that requires the 
cooperation of various stakeholders, including engineers, 
maintenance personnel, and policymakers. By leveraging 
advanced technologies and techniques, experts can identify 
potential issues and take corrective measures before they 
become major problems. This helps to keep bridges safe and 
operational for years to come while reducing the costs 
associated with maintenance and repairs [11]. 

In this article, we take a comprehensive look at the diverse 
BHM approaches available, including those utilizing sensors, 
NDT, models, and AI. Drawing from relevant literature and 
research studies, we not only examine the benefits of each 
approach but also delve into the hurdles faced during their 
implementation. These obstacles include sensor placement and 
data acquisition, data analysis and interpretation, cost and 
complexity, and environmental effects. To provide a more 
nuanced understanding, we also explore potential solutions to 
these challenges and propose innovative research ideas aimed 
at bridging the gaps in BHM. 

II. APPROACHES 

BHM is a crucial process that integrates traditional and 
modern methodologies. The traditional methods comprise non-
invasive techniques that do not involve computational tools, 
whereas the modern approaches entail cutting-edge 
technologies and data analytics tools that enable continuous 
monitoring and evaluation of the bridge's health. This involves 
deploying diverse sensors, data acquisition systems, and 
machine learning algorithms to collect and analyze data on the 
bridge's performance and behavior in real time. Since each 
technique has its advantages and limitations, identifying the 
best approach can be challenging [12]. Nonetheless, several 
techniques have proven to be highly effective in identifying and 
tracking structural variations over time. In this review, we will 
discuss some of the best techniques for BHM. 

A. Visual Inspection 

Visual inspection is a well-established and widely used 
technique for monitoring the health of bridges. This method 
involves a careful observation of the bridge structure, searching 
for indications of deterioration, such as deformations, cracks, 
and corrosion. Visual inspection is a cost-effective approach 
that can be conducted by trained personnel without specialized 
equipment [13]. It incorporates a range of tools and methods, 
including NDT, manual measurements, and visual observations 
to evaluate the state of the bridge. Examples of traditional 

techniques employed in BHM include the visual examination 
of bridge decks, beams, and piers, measuring crack width, 
assessing concrete strength through ultrasonic testing, and 
inspecting steel structures using magnetic particle inspection 
[14]. These methods have been in use for many years and have 
proven to be useful in identifying potential problems in bridge 
structures. Nonetheless, they can be time-consuming, and 
expensive, and may not always provide a comprehensive 
overview of the bridge's health [15]. 

B. Non-Destructive Testing 

NDT is a highly effective technique for BHM that allows for 
the detection of damage or deterioration without causing any 
harm to the structure. This method can detect surface defects, 
such as cracks or corrosion, as well as internal defects, such as 
voids or delamination. NDT techniques can also be used in 
conjunction with other approaches, such as Wireless Sensor 
Networks (WSNs) and Finite Element Method (FEM), to 
provide a comprehensive understanding of the structural 
behavior of the bridge [15]. 

In the field of BHM, several NDT methods are commonly 
employed for the evaluation of material properties and defects 
in structures. These techniques include: 

1.Ultrasonic Testing 

Ultrasonic Testing (UT) is a useful technique for BHM, as it 
allows inspectors to detect and assess the condition of critical 
structural components without causing damage to the bridge. 
UT is particularly effective for detecting and characterizing 
defects such as cracks, corrosion, and voids in bridge 
components such as steel cables, girders, and welds [16]. 

Several studies have highlighted the benefits of UT for BHM. 
For example, a study conducted by researchers at the University 
of Maryland used UT to evaluate the condition of the 
prestressing strands in concrete bridge decks. The study found 
that UT was a reliable and effective method for detecting and 
characterizing defects in the strands, such as broken wires and 
corrosion, and could provide valuable information for assessing 
the overall condition of the bridge deck [17]. 

Another study conducted by researchers at the University of 
Tokyo used UT to inspect the welds of a steel box girder bridge. 
The study found that UT was able to detect surface-breaking 
cracks in the welds that were not visible to the naked eye and 
could provide important information for determining the 
remaining service life of the bridge [18]. 

2.Ground Penetrating Radar 

Ground Penetrating Radar (GPR) is an NDT technique that 
is increasingly being used for BHM. GPR uses high-frequency 
electromagnetic waves to detect subsurface features and defects 
in the bridge structure, such as delamination, voids, and cracks 
in concrete [19]. 

Several studies have shown the effectiveness of GPR for 
BHM. For example, a study by researchers at the University of 
Kansas used GPR to detect delamination in a concrete bridge 
deck. The study found that GPR was able to accurately locate 
and characterize the size and depth of the delamination, which 
could help bridge owners and inspectors make informed 
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decisions about maintenance and repair activities [20]. 
Another study conducted by researchers at the University of 

Pittsburgh used GPR to detect voids in a concrete bridge deck. 
The study found that GPR was able to accurately locate and 
characterize the size and depth of the voids and could provide 
important information for assessing the overall condition of the 
bridge deck [21]. 

3. Infrared Thermography 

Infrared Thermography (IRT) is an NDT technique that is 
increasingly being used for BHM. IRT uses a thermal camera 
to detect heat patterns and temperature variations on the surface 
of bridge components, which can provide valuable information 
about the condition of the material and any potential defects 
[22]. 

Several studies have shown the effectiveness of IRT for 
BHM. For example, a study conducted by researchers at the 
University of Nottingham used IRT to detect corrosion in steel 
bridge components. The study found that IRT was able to 
accurately detect and characterize the extent of the corrosion, 
which could help bridge owners and inspectors make informed 
decisions about maintenance and repair activities [23].  

Another study conducted by researchers at the University of 
Delaware used IRT to detect voids and delamination in a 
concrete bridge deck. The study found that IRT was able to 
accurately locate and characterize the size and depth of the 
defects and could provide important information for assessing 
the overall condition of the bridge deck [24]. 

4. Magnetic Particle Inspection 

Magnetic Particle Inspection (MPI) is an NDT technique that 
is often used for BHM. MPI involves the use of a magnetic field 
and magnetic particles to detect surface and near-surface 
defects in ferromagnetic materials, such as steel [25]. 

Several studies have shown the effectiveness of MPI for 
BHM. For example, a study conducted by researchers at the 
University of Surrey used MPI to detect fatigue cracks in steel 
bridge components. The study found that MPI was able to 
accurately locate and characterize the size and depth of the 
cracks, which could help bridge owners and inspectors to make 
informed decisions about maintenance and repair activities 
[26]. 

Another study conducted by researchers at the University of 
Texas at Austin used MPI to detect corrosion in steel bridge 
components. The study found that MPI was able to accurately 
detect and characterize the extent of the corrosion, which could 
help bridge owners and inspectors to make informed decisions 
about maintenance and repair activities [27]. 

5. Acoustic Emission Testing 

Acoustic Emission Testing (AET) is an NDT technique that 
is increasingly being used for BHM. AET involves the use of 
acoustic sensors to detect high-frequency stress waves that are 
generated by active damage mechanisms, such as cracking, 
delamination, and debonding, in bridge components [28].  

Several studies have shown the effectiveness of AET for 
BHM. For example, a study conducted by researchers at the 
University of Colorado Boulder used AET to detect cracking in 

a concrete bridge deck. The study found that AET was able to 
accurately locate and characterize the size and depth of the 
cracks, which could help bridge owners and inspectors to make 
informed decisions about maintenance and repair activities 
[29]. 

Another study conducted by researchers at Iowa State 
University used AET to detect damage in steel bridge 
components. The study found that AET was able to accurately 
detect and characterize the extent of the damage, which could 
help bridge owners and inspectors to make informed decisions 
about maintenance and repair activities [30]. 

6. LiDAR 

LiDAR (Light Detection and Ranging) is a remote sensing 
technology that is increasingly being used for BHM. LiDAR 
involves the use of laser light to create high-resolution 3D maps 
of bridge structures and surrounding environments [31]. 

Several studies have shown the effectiveness of LiDAR for 
BHM. For example, a study conducted by researchers at the 
University of California Berkeley used LiDAR to detect and 
monitor deformation in a steel truss bridge. The study found 
that LiDAR was able to accurately detect and quantify the 
deformation in real-time, which could help bridge owners and 
inspectors to make informed decisions about maintenance and 
repair activities [32]. 

Another study conducted by researchers at the University of 
Iowa used LiDAR to detect and monitor structural vibrations in 
a concrete bridge deck. The study found that LiDAR was able 
to accurately detect and quantify the vibrations, which could 
help bridge owners and inspectors to identify potential damage 
and make informed decisions about maintenance and repair 
activities [33]. 

7. Photogrammetry 

Photogrammetry is a technique that uses photographs to 
create 3D models of objects. It belongs to the same category as 
lidar (NDT techniques) and is also used to monitor changes in 
the geometry of structures [34]. Photogrammetry is an NDT 
technique that is increasingly being used for BHM. 
Photogrammetry involves the use of digital cameras to capture 
images of bridge structures, which are then processed to create 
high-resolution 3D models of the bridge components [35]. 

Several studies have shown the effectiveness of 
photogrammetry for BHM. For example, a study conducted by 
researchers at the University of Southampton used 
photogrammetry to detect and monitor deformation in a steel 
box girder bridge. The study found that photogrammetry was 
able to accurately detect and quantify the deformation, which 
could help bridge owners and inspectors to make informed 
decisions about maintenance and repair activities [36]. 

Another study conducted by researchers at the University of 
Illinois at Urbana-Champaign used photogrammetry to detect 
and monitor damage in a concrete bridge deck. The study found 
that photogrammetry was able to accurately detect and quantify 
the damage, which could help bridge owners and inspectors to 
make informed decisions about maintenance and repair 
activities [37]. 
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C. Sensor-Based Methods  

In BHM, sensor-based methods are widely used to capture, 
measure, and analyze the structural behavior of the bridge. 
These methods utilize various types of sensors such as 
accelerometers, strain gauges, displacement sensors, and 
temperature sensors to collect data on the bridge's response to 
environmental and traffic loads [38]. The collected data are then 
processed and analyzed to identify any abnormalities or 
changes in the bridge's behavior that could indicate potential 
structural issues. Vibration-based monitoring, strain-based 
monitoring, and displacement-based monitoring are some of the 
commonly used sensor-based methods in BHM [39]. 

Vibration-based monitoring involves measuring the dynamic 
response of the bridge to ambient or induced vibrations. This 
technique uses accelerometers installed at strategic locations on 
the bridge to analyze the resulting vibration signals and detect 
any changes or anomalies that could indicate structural damage 
or deterioration. This method is particularly effective in 
identifying changes in natural frequencies and mode shapes of 
the bridge, which can provide valuable insights into the 
structural integrity of the bridge [40].  

Studies have demonstrated the effectiveness of vibration-
based monitoring in BHM. For instance, researchers at the 
University of Maryland used vibration-based monitoring to 
detect and monitor fatigue cracks in a steel truss bridge, while 
researchers at the University of Waterloo used vibration-based 
monitoring to detect and monitor changes in the stiffness of a 
concrete bridge deck. These studies highlight the potential of 
vibration-based monitoring to detect and quantify changes in 
the structural behavior of bridges, enabling bridge owners and 
inspectors to make informed decisions about maintenance and 
repair activities [41], [42]. 

1. Strain-Based Monitoring 

Strain-based monitoring is based on measuring the 
deformation of the bridge under loading conditions. This 
approach involves installing strain gauges or other types of 
strain sensors at critical locations on the bridge to measure the 
changes in strain caused by traffic loads, temperature 
variations, or other external factors. The collected strain data 
can then be used to estimate the stress and load distribution in 
the bridge and to detect any changes in the structural behavior 
of the bridge. References for this approach include [43]. 

Several studies have shown the effectiveness of strain-based 
monitoring for BHM. For example, a study conducted by 
researchers at the University of Nottingham used strain-based 
monitoring to detect and monitor the structural behavior of a 
prestressed concrete bridge. The study found that strain-based 
monitoring was able to accurately detect and quantify the 
structural behavior of the bridge, which could help bridge 
owners and inspectors to make informed decisions about 
maintenance and repair activities [44]. 

Another study conducted by researchers at the University of 
Tokyo used strain-based monitoring to detect and monitor the 
behavior of a cable-stayed bridge during a strong earthquake. 
The study found that strain-based monitoring was able to 
accurately detect the changes in the bridge's behavior during the 

earthquake, which could help bridge owners and inspectors to 
assess the damage and make informed decisions about 
maintenance and repair activities [45]. 

2. Displacement-Based Monitoring 

Displacement-based monitoring is based on measuring the 
displacement or deformation of the bridge under loading 
conditions. This approach involves installing displacement 
sensors such as LVDTs (Linear Variable Displacement 
Transducers) or inclinometers at critical locations on the bridge 
to measure the changes in displacement caused by traffic loads, 
temperature variations, or other external factors. The collected 
displacement data can then be used to estimate the deflection 
and deformation of the bridge and to detect any changes in the 
structural behavior of the bridge [46]. 

Overall, sensor-based methods provide valuable insights into 
the structural health of bridges and are widely used in BHM 
applications. However, the selection of the appropriate sensors 
and their placement on the bridge is critical to the success of 
these methods, and the collected data must be carefully 
processed and analyzed to ensure accurate and reliable results 
[47]. 

D. Simulation-Based Methods 

Simulation-based methods in BHM involve the use of 
computer simulations to model the behavior of the bridge under 
various conditions and loads. These simulations can be used to 
predict the structural response of the bridge, identify potential 
issues, and assess the effectiveness of various maintenance and 
repair strategies. Model-based methods for BHM rely on 
creating mathematical models of the bridge and using these 
models to analyze sensor data and detect any changes in the 
behavior of the bridge. These methods often require extensive 
knowledge of the bridge's properties and behavior, as well as 
detailed information about its geometry and construction [48]. 

1. Finite Element Method 

Finite Element Modeling (FEM) entails the development of 
a finite element model for the bridge by interconnecting a series 
of elements [49]. FEM is a numerical technique used to 
simulate the behavior of structures under various loading 
conditions. This approach can be used to predict the response 
of a bridge to different types of loads, such as traffic or wind, 
and can also be used to detect changes in the structural behavior 
of the bridge over time. FEM can be used in combination with 
other approaches, such as WSNs and NDT, to provide a more 
complete picture of the structural behavior of the bridge [50]. 

Several studies have shown the effectiveness of FEM for 
BHM. For example, a study conducted by researchers at the 
University of Maryland used FEM to model the behavior of a 
steel truss bridge subjected to fatigue loading. The study found 
that FEM was able to accurately predict the location and size of 
the fatigue cracks in the bridge, which could help bridge owners 
and inspectors make informed decisions about maintenance and 
repair activities [51]. 

Another study conducted by researchers at the University of 
British Columbia used FEM to model the behavior of a concrete 
bridge deck under different loading conditions. The study found 
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that FEM was able to accurately predict the behavior of the 
deck, including the development of cracks and other damage, 
which could help bridge owners and inspectors identify 
potential problems and make informed decisions about 
maintenance and repair activities [52]. 

2. Kalman Filter  

The Kalman filter is a widely used mathematical algorithm 
that is used in BHM to estimate the state of a structure based on 
measurements from sensors. The filter uses a set of equations 
to estimate the current state of the structure, based on a model 
of the system and measurements of the system's outputs [53].  

Several studies have demonstrated the effectiveness of the 
Kalman filter for BHM. For example, a study conducted by 
researchers at the University of California, Berkeley used the 
Kalman filter to estimate the displacements of a bridge using 
data from a network of accelerometers. The study found that the 
Kalman filter was able to accurately estimate the displacements 
of the bridge, even in the presence of noise and uncertainties in 
the measurements [54]. 

3. Virtual Reality 

Virtual reality (VR) is a technology that allows users to 
experience a computer-generated environment as if they were 
really there. VR can be used to simulate the behavior of a 
structure under different loads or conditions and can help 
engineers and researchers better understand the behavior of a 
structure. It belongs to the category of simulation-based 
approaches to BHM [55]. VR can be used in conjunction with 
any of the above approaches in combination with various BHM 
methods, to visualize the data and make it easier to understand. 
For example, VR can be used to create a virtual 3D model of 
the bridge and overlay the data from sensors or FEA 
simulations to provide a visual representation of the bridge's 
health. This can help bridge engineers and maintenance teams 
better understand the data and make more informed decisions 
about maintenance and repairs [56]. Therefore, VR can be 
considered a complementary tool to other BHM methods, rather 
than being categorized solely as a model-based method. By 
combining VR with other BHM methods, engineers can create 
a more complete picture of the structure's behavior and identify 
potential problems more accurately [57]. 

For example, in a study conducted by researchers at the 
University of Illinois at Urbana-Champaign, a VR model was 
developed to monitor the performance of a bridge in real time. 
The VR model was created using sensors that collected data on 
the bridge's deformation, strain, and temperature. The data were 
then fed into a computer model that generated a 3D VR 
representation of the bridge. The VR model was used to 
visualize the data and to identify potential problems, such as 
cracks or deformation in the bridge structure [58]. 

In another study conducted by researchers at the University 
of Michigan, a VR system was developed to monitor the 
performance of a bridge in real time using video cameras and 
image processing techniques. The VR model was used to 
identify potential structural problems and to develop 
appropriate maintenance strategies [59]. 

E. Artificial Intelligence-Based Methods 

AI-based methods have gained significant attention in recent 
years for BHM of bridges. These methods involve using various 
AI techniques to process and analyze data collected from 
sensors placed on the bridge. Some of the commonly used AI-
based methods for BHM of bridges are: 

1. Deep Learning 

Deep learning is a type of AI that has shown promising 
results in detecting and diagnosing structural damage in 
bridges. In a study by Li et al., a deep-learning model was 
developed to detect cracks in bridge images with high accuracy 
[60]. Deep learning is a type of AI that involves training neural 
networks with large amounts of data to perform tasks such as 
image recognition, speech recognition, and natural language 
processing. In the field of BHM, deep learning has been used to 
analyze sensor data and detect anomalies or potential issues in 
the structure [61]. 

One example of the use of deep learning in BHM is a study 
conducted by researchers at the University of Maryland, where 
they developed a deep learning framework to detect damage in 
bridges using data from a network of strain sensors. The study 
found that the deep learning framework was able to accurately 
detect and localize damage in the bridge, even in the presence 
of noise and uncertainties in the sensor measurements [62].  

Another example is a study conducted by researchers at the 
University of Cambridge, where they used deep learning to 
detect and classify cracks in concrete bridges using images 
captured by UAVs. The study found that the deep learning 
algorithm was able to accurately detect and classify cracks in 
the images, with a high degree of sensitivity and specificity 
[63]. 

2. Fuzzy Logic 

Fuzzy logic is a type of AI algorithm that can be used to 
analyze uncertain and incomplete data. In a study by Li and Ou, 
a fuzzy logic-based approach was developed to evaluate the 
health condition of a bridge using acceleration data [64]. 

Fuzzy logic is a type of mathematical logic that allows for 
approximate reasoning, which is useful in situations where 
there is uncertainty or imprecision in the data being analyzed. 
In the field of BHM, fuzzy logic has been used to analyze sensor 
data and make decisions about the condition of the bridge. 

One example of the use of fuzzy logic in BHM is a study 
conducted by researchers at Delft University of Technology in 
the Netherlands, where they developed a fuzzy logic system to 
assess the condition of a bridge based on vibration data. The 
system was able to accurately predict the condition of the 
bridge, even in the presence of noise and uncertainties in the 
sensor measurements [65]. 

Another example is a study conducted by researchers at the 
University of Minho in Portugal, where they developed a fuzzy 
logic system to assess the condition of a bridge based on visual 
inspection data. The system was able to accurately predict the 
condition of the bridge, even when the visual inspection data 
were incomplete or ambiguous [66]. 
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3. Artificial Neural Networks 

Artificial Neural Networks (ANNs) are a type of AI 
algorithm that can be used for various types of analysis, 
including BHM of bridges. In a study by Wang et al., an ANN-
based approach was proposed for identifying the location and 
severity of bridge damage using vibration data [67]. 

ANNs are a type of machine learning algorithm that can be 
trained to identify patterns in data and make predictions based 
on those patterns. In the context of BHM, ANNs can be trained 
using data from various sensors and inspection techniques to 
identify patterns that are indicative of the health of the bridge 
[68]. 

One example of the use of ANNs in BHM is a study 
conducted by researchers at the University of Illinois at Urbana-
Champaign, where they developed an ANN-based system to 
predict the load capacity of a bridge based on NDT data. The 
system was able to accurately predict the load capacity of the 
bridge, even when the testing data were noisy and incomplete 
[69]. 

Another example is a study conducted by researchers at 
Tongji University in China, where they developed an ANN-
based system to detect cracks in concrete bridges using acoustic 
emission data. The system was able to accurately detect the 
presence and location of cracks, even in noisy environments 
[70]. 

ANNs have several advantages and disadvantages when it 
comes to their application in BHM. On the one hand, ANNs can 
learn complex patterns and relationships in data, which can help 
improve the accuracy of BHM systems [71]. ANNs can also be 
trained to detect anomalies and potential issues in bridge 
structures, which can help identify problems before they 
become critical [72]. On the other hand, ANNs can be 
computationally expensive and require large amounts of 
training data to perform effectively, which can be a challenge 
in some BHM applications [73]. 

ANNs can be sensitive to noise and outliers in data, which 
can lead to inaccurate predictions and false alarms [74]. 

4. Genetic Algorithms 

Genetic Algorithms (GAs) are a type of AI algorithm that can 
be used to optimize parameters and improve the accuracy of 
BHM systems. In a study by Yousefi-Khoshbakht et al., a GA-
based approach was proposed for bridge damage detection 
using acceleration data [75]. 

GAs are a type of optimization algorithm that simulates the 
process of natural selection to find the optimal solution to a 
problem. In the context of BHM, GAs can be used to optimize 
the sensor placement and monitoring strategy to minimize the 
cost and maximize the effectiveness of bridge monitoring. A 
study conducted by researchers at the University of 
Southampton, UK, used a GA to optimize the sensor placement 
for BHM of a bridge. The study found that the GA was able to 
identify the optimal sensor locations that minimized the cost 
and provided the most useful information for detecting damage 
in the bridge [76]. 

One example of the use of GAs in BHM is a study conducted 
by researchers at the University of California, San Diego, where 

they developed a GA-based system to optimize the sensor 
placement for bridge damage detection. The system was able to 
identify the optimal sensor placement that maximizes the 
detection rate and minimizes the false alarm rate [77]. 

Another example of the use of GAs in BHM is a study 
conducted by researchers at the University of Michigan, where 
they developed a GA-based system to optimize the inspection 
and maintenance schedule for bridge components. The system 
was able to identify the optimal schedule that minimizes the 
maintenance cost and maximizes the bridge service life [78]. 
One example of the use of GAs in BHM is a study conducted 
by researchers at the University of Delaware, where they 
developed a GA-based optimization model for sensor 
placement on bridges. The model was able to determine the 
optimal number and placement of sensors on a bridge to detect 
damage accurately while minimizing cost [79]. Another 
example is a study conducted by researchers at the University 
of Maryland, where they developed a GA-based model for the 
maintenance scheduling of bridges. The model was able to 
optimize the maintenance schedule of a bridge based on the 
probability of damage occurrence and the cost of maintenance 
[80]. 

GAs have several advantages and disadvantages when it 
comes to their application in BHM and optimization tasks. 

One advantage of GAs is their ability to search large solution 
spaces and find optimal solutions in a relatively short amount 
of time. One example of the use of GAs in BHM is a study 
conducted by researchers at the University of Delaware, where 
they developed a GA-based optimization model for sensor 
placement on bridges. The model was able to determine the 
optimal number and placement of sensors on a bridge to detect 
damage accurately while minimizing cost. This study 
demonstrated the ability of GAs to search large solution spaces 
and find optimal solutions in a relatively short amount of time 
[81]. 

Additionally, GAs can handle both continuous and discrete 
variables, making them suitable for optimization problems with 
a mix of variable types. one study that showcases the ability of 
GAs to handle both continuous and discrete variables is 
research conducted by Kaya and Ulker-Kaya where they 
developed a GA-based optimization model for designing a 
water distribution network [82]. The model was able to handle 
both continuous variables such as pipe diameters and discrete 
variables such as pipe types, allowing for a more 
comprehensive optimization of the network design [83]. 

However, one potential disadvantage of GAs is that they are 
not guaranteed to find the global optimal solution, only a local 
one. This is because GAs operate based on a probabilistic 
search mechanism and the fitness of the solutions evaluated in 
each generation determines the probability of being selected for 
the next generation. Therefore, the quality of the initial 
population and the selection of genetic operators heavily 
influence the effectiveness of a GA-based solution [84]. 
Additionally, GAs can be computationally expensive and 
require significant computational resources, especially when 
dealing with complex optimization problems or large solution 
spaces. Therefore, the use of parallel computing and other 
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optimization techniques may be necessary to improve the 
efficiency of GA-based optimization [85]. 

III. CHALLENGES 

BHM is a valuable tool for detecting and monitoring damage 
in structures such as bridges, buildings, and aircraft. However, 
there are several challenges associated with implementing 
BHM systems. In this review, we will discuss some of the 
challenges. 

A. Sensor Placement and Data Acquisition 

One of the major challenges of BHM is determining the 
optimal sensor placement and data acquisition strategy. The 
placement of sensors on the structure can significantly impact 
the accuracy and effectiveness of the BHM system. 
Additionally, the amount of data generated by the sensors can 
be overwhelming, making it difficult to analyze and interpret 
the data [86]. 

B. Data Analysis and Interpretation 

Another challenge of BHM is analyzing and interpreting the 
data generated by the sensors. The large amount of data 
generated by BHM systems can make it difficult to identify the 
root cause of any detected changes in the structural behavior. 
Additionally, the interpretation of the data can be subjective, 
requiring significant expertise and experience [87]. 

C. Cost and Complexity 

Implementing BHM systems can be expensive and complex, 
particularly for large structures such as bridges and buildings. 
The cost of the sensors, data acquisition equipment, and 
analysis software can be significant, and the complexity of the 
system can make it difficult to maintain and operate [88]. 

D.  Environmental Effects 

The environment in which the structure is located can also 
pose a challenge for BHM systems. Environmental factors such 
as temperature, humidity, and vibration can impact the accuracy 
and reliability of the data generated by the sensors. 
Additionally, the exposure of the sensors to harsh 
environmental conditions can lead to premature sensor failure 
[89]. 

IV. ADDRESS THE CHALLENGES 

Data analysis and interpretation are critical aspects of BHM 
systems. To address the challenge of data analysis and 
interpretation, several approaches have been proposed. In this 
review, we will discuss some of these approaches and provide 
a reference for each paragraph. 

A. Signal Processing Techniques 

Signal processing techniques can be used to address the 
challenge of data analysis and interpretation in BHM. These 
techniques involve analyzing and filtering the data collected by 
sensors to extract meaningful information about structural 
behavior. Signal processing techniques can be used to identify 
damage or changes in structural behavior over time [90]. 

B. Data Fusion 

Data fusion involves combining data from multiple sources 
to improve the accuracy and reliability of BHM systems. Data 
fusion can be achieved through various methods, including 
statistical techniques, AI, and machine learning. Data fusion 
can provide a more comprehensive view of structural behavior 
by combining data from different sensing modalities [91]. 

C. Pattern Recognition 

Pattern recognition techniques can be used to identify 
patterns or anomalies in the data collected by BHM systems. 
Pattern recognition can be achieved through various techniques, 
including clustering, principal component analysis, and neural 
networks. Pattern recognition can be used to identify damage or 
changes in structural behavior that may not be apparent through 
visual inspection [92]. 

Pattern recognition is an essential tool in BHM to identify 
changes in structural behavior that may indicate damage or 
deterioration. In this review, we will discuss some approaches 
for pattern recognition in BHM and provide a reference for each 
paragraph. There are several different approaches to pattern 
recognition in BHM, each with its advantages and 
disadvantages. Here, we compare some of these approaches in 
more detail [93]. 

1. Model-Based Approaches 

Model-based approaches rely on comparing sensor 
measurements with a mathematical model of the structure to 
detect changes in the behavior of the structure. These 
approaches require a precise understanding of the structure's 
behavior and are sensitive to modeling errors. However, they 
can provide information about the location and extent of 
damage and can be used to predict the future behavior of the 
structure [94]. 

One advantage of model-based approaches is that they can 
provide a clear understanding of the underlying physics of the 
structure, which can help to interpret the results of the analysis. 
Model-based approaches are also well-suited for detecting 
damage in complex structures, such as bridges or aircraft, where 
there may be multiple modes of vibration [95]. 

However, model-based approaches require a precise 
understanding of the structure's behavior and are sensitive to 
modeling errors. They also require accurate input data, such as 
material properties and loading conditions, which may be 
difficult to obtain in practice [95]. 

2. Data-Driven Approaches 

Data-driven approaches rely on machine learning algorithms 
to identify patterns in the sensor data that indicate changes in 
the behavior of the structure. These approaches do not require 
a precise understanding of the structure's behavior, but they 
may not be able to provide information about the location and 
extent of the damage [96]. 

One advantage of data-driven approaches is that they are 
well-suited for detecting subtle changes in the structure's 
behavior, which may not be apparent from a model-based 
approach. Data-driven approaches are also more flexible than 
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model-based approaches and can adapt to changes in the 
structure's behavior over time [97]. 

However, data-driven approaches may not be able to provide 
information about the location and extent of damage, and they 
may require a large amount of training data to be effective [98]. 

3. Signal Processing Approaches 

Signal processing approaches rely on analyzing the signal 
characteristics of the sensor data to detect changes in the 
behavior of the structure. These approaches can provide 
information about the location and extent of damage and can be 
used to predict the future behavior of the structure. However, 
they require a precise understanding of the structure's behavior 
and are sensitive to changes in environmental conditions [99]. 

One advantage of signal processing approaches is that they 
are well-suited for detecting changes in the structure's behavior 
that are associated with specific types of damage, such as cracks 
or delamination. Signal processing approaches are also less 
computationally intensive than model-based approaches and 
can be implemented in real-time [100]. 

However, signal-processing approaches require a precise 
understanding of the structure's behavior and are sensitive to 
changes in environmental conditions. They may also be less 
effective for detecting more subtle changes in the structure's 
behavior [101]. 

D. Hybrid Approaches 

Hybrid approaches combine different methods to overcome 
the limitations of individual approaches. For example, a hybrid 
approach may use a model-based approach to identify the 
location and extent of damage and a data-driven approach to 
predict the future behavior of the structure. One advantage of 
hybrid approaches is that they can combine the strengths of 
different methods to provide a more accurate and reliable 
assessment of the structures. 

Here are some examples of combinations of methods in 
BHM with references: 

1. Hybrid Approach Combining UT and Finite Element 
Modeling 

This approach involves combining UT with finite element 
modeling to identify and assess damage in concrete bridge 
decks. The method was tested on a reinforced concrete bridge 
deck, and the results showed that the hybrid approach 
outperformed traditional UT and finite element modeling 
methods [102]. 

2. Sensor Fusion Approach Combining Acoustic Emission 
Testing and Infrared Thermography 

This approach involves integrating data from AET and IRT 
to detect and monitor fatigue cracks in steel bridges. The 
method was tested on a steel bridge, and the results showed that 
the sensor fusion approach improved the detection and 
monitoring of fatigue cracks compared to using either technique 
alone [103]. 

3. Multi-Scale Approach Combining Photogrammetry and 
Lidar 

This approach involves integrating data from 
photogrammetry and lidar to create a high-resolution 3D model 
of a bridge and monitor its structural health. The method was 
tested on a concrete arch bridge, and the results showed that the 
multi-scale approach improved the accuracy and efficiency of 
BHM compared to using either technique alone [104]. 

4. Machine Learning Approach Combining Acoustic 
Emission Testing and Artificial Neural Networks 

This approach involves using AET data and ANNs to classify 
different types of damage in concrete bridges. The method was 
tested on a reinforced concrete bridge, and the results showed 
that the machine-learning approach improved the accuracy and 
efficiency of damage classification compared to traditional 
methods [105]. 

E. Decision-Making Algorithms 

Decision-making algorithms can be used to interpret the data 
collected by BHM systems and make decisions about structural 
behavior. Decision-making algorithms can be used to identify 
the severity of the damage, predict future behavior, and make 
recommendations for maintenance or repair. Decision-making 
algorithms can provide a more objective and quantitative 
approach to BHM [106]. Decision-making algorithms play a 
crucial role in BHM systems, as they allow the identification of 
the most critical actions to be taken based on the information 
provided by sensors. There are several approaches for decision-
making algorithms in BHM, and the choice of the best approach 
depends on the specific requirements of the application.  

1. Bayesian Networks 

Bayesian Networks (BN) have been widely used in BHM to 
model the structural health of bridges and to make probabilistic 
predictions of their performance. BNs are particularly useful in 
BHM because they can handle uncertainty and incomplete data 
and can provide a comprehensive view of the bridge's health by 
integrating multiple sources of information [107]. 

In SHM, BNs have been used to identify damage in bridges 
by combining data from various sensors and measurements, 
such as accelerometers, strain gauges, and temperature sensors. 
BNs can be used to model the relationships between these 
measurements and the presence or absence of damage, and to 
update the probability of damage as new data becomes available 
[108]. 

In risk assessment, BNs have been used to evaluate the safety 
of bridges by modeling the probability of failure or collapse 
under different scenarios, such as earthquakes or wind loading. 
BNs can incorporate data from historical records, expert 
knowledge, and simulation results to estimate the likelihood of 
failure and to identify the most critical components of the 
bridge [109]. 

In decision-making, BNs have been used to support 
maintenance and repair decisions by modeling the cost and 
benefits of different options, such as replacing or repairing a 
component or implementing a new monitoring strategy. BNs 
can integrate data from multiple sources, such as inspection 
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reports, maintenance records, and cost estimates, and can help 
decision-makers to weigh the trade-offs between different 
objectives, such as safety, cost, and availability [110]. 

2. Artificial Intelligence and Machine Learning 

AI and Machine Learning (ML) algorithms are used in BHM 
to predict the remaining service life of a bridge based on data 
collected from various monitoring systems. AI and ML have 
been increasingly applied in BHM to improve the accuracy and 
efficiency of a bridge inspection, damage detection, and risk 
assessment. AI and ML techniques can analyze large amounts 
of data from various sources, such as sensors, images, and 
videos, and can identify patterns and anomalies that may not be 
visible to human inspectors [111]. Some notable applications of 
AI and ML in BHM include: 

In image processing, AI and ML techniques have been used 
to analyze images and videos of bridges and to identify cracks, 
corrosion, and other signs of damage. These techniques can be 
trained on large datasets of annotated images and can use deep 
learning algorithms to automatically detect and classify defects 
[112]. In sensor data analysis, AI and ML techniques have been 
used to analyze data from various sensors, such as 
accelerometers, strain gauges, and temperature sensors, and to 
detect changes in the bridge's behavior that may indicate 
damage. These techniques can use time-series analysis, 
clustering, and anomaly detection algorithms to identify 
patterns and outliers in the data [113]. 

In risk assessment, AI and ML techniques have been used to 
predict the probability of failure or collapse of bridges under 
different scenarios, such as earthquakes or wind loading. These 
techniques can use statistical models, such as BN or Random 
Forests, to integrate data from multiple sources, such as 
inspection reports, maintenance records, and weather forecasts, 
and to estimate the likelihood of failure under different 
conditions [114]. 

3.Markov Decision Processes 

Markov Decision Processes (MDP) have been applied in 
BHM to model the behavior of bridges over time and to make 
optimal decisions about maintenance and repair actions. MDPs 
are particularly useful in BHM because they can incorporate 
stochasticity and uncertainty in the bridge's performance, and 
can help decision makers to balance competing objectives, such 
as safety, cost, and availability [115]. Some notable 
applications of MDP in BHM include: 

In maintenance planning, MDPs have been used to optimize 
the timing and type of maintenance actions for bridges. MDPs 
can model the evolution of the bridge's health over time, 
considering the effects of different maintenance actions, such 
as inspection, repair, and replacement, and can optimize the 
sequence and timing of these actions to minimize the expected 
cost of maintenance and maximize the expected service life of 
the bridge [116]. In inspection scheduling, MDPs have been 
used to optimize the frequency and locations of inspections for 
bridges. MDPs can model the likelihood and consequences of 
different types of damage, such as fatigue cracking, corrosion, 
and deformation, and can optimize the frequency and locations 

of inspections to minimize the expected cost of inspection and 
maximize the expected detection rate of damage [117]. 

In decision making under uncertainty, MDPs have been used 
to support decision making for bridges under uncertain 
conditions, such as extreme weather events, traffic loads, and 
seismic hazards. MDPs can model the probability and 
consequences of different scenarios, such as failure or collapse, 
and can optimize the decisions of maintenance and repair 
actions under different risk preferences and constraints [118]. 

In summary, there is no single best approach for decision-
making in BHM, as each approach has its own strengths and 
weaknesses. The choice of approach depends on the specific 
needs and characteristics of the structure being monitored. 
[119]. When comparing these approaches, there are several 
factors to consider. Rule-based systems are simple and easy to 
implement, but their effectiveness depends on the quality of the 
predefined rules. Model-based systems are effective at 
detecting damage in the early stages, but they require accurate 
and reliable models. AI systems can detect complex patterns in 
the data but require large amounts of high-quality data for 
training. Hybrid systems can combine the strengths of different 
approaches but can be more complex to implement [120]. 

Another factor to consider is the computational requirements 
of each approach. Rule-based systems and model-based 
systems are relatively computationally efficient, but AI systems 
can be computationally expensive, especially for large-scale 
structures. Additionally, the interpretability of the results is an 
important factor to consider. Rule-based systems and model-
based systems are typically more interpretable than AI systems, 
which can be viewed as a black box [121]. 

Overall, the best approach for decision-making algorithms in 
BHM depends on the specific requirements of the application, 
including the complexity of the system, the availability of data, 
and the desired level of accuracy [122]. BNs, ANNs, fuzzy 
logic, and SVMs are all viable options, and researchers should 
carefully consider the strengths and weaknesses of each 
approach before selecting the best one for their application 
[123]. 

V. GAPS IN THE FIELD OF STRUCTURAL MONITORING OF 

BRIDGES 

BHM is increasingly relevant for the maintenance of existing 
structures or new structures with innovative concepts that 
require validation of design predictions. The challenges 
associated with BHM are related to the detection of specific 
bridge characteristics that may be indicators of anomalous 
behavior. There are several crucial gaps in the field of structural 
monitoring of bridges, some of which are discussed below. 

A. Lack of Standardization 

One of the critical gaps in the field of structural monitoring 
of bridges is the lack of standardization in sensor placement, 
data acquisition, and data analysis. The absence of 
standardization makes it difficult to compare data obtained 
from different bridges and leads to inconsistencies in results. 
Researchers have highlighted the need for standardization in 
structural monitoring to improve its reliability and effectiveness 
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[124]. The development of new standards and guidelines for 
BHM would help to ensure consistency and reliability in data 
collection, analysis, and decision-making, and to promote best 
practices and innovations in the field [125]. 

B. Cost-Effectiveness 

Another significant gap in the structural monitoring of 
bridges is the cost of installation and maintenance of monitoring 
systems. The high cost of monitoring systems limits their 
widespread application, particularly in developing countries. 
Researchers have suggested the need for the development of 
cost-effective monitoring systems that can be implemented in 
many bridges [126]. 

C. Limited Long-term Data 

Structural monitoring of bridges requires long-term data to 
detect changes in the behavior of the structure accurately. 
However, long-term data are often limited, and researchers 
have highlighted the need for long-term monitoring of bridges 
to improve the understanding of structural behavior over time 
[127]. 

D. Interpretation of Data 

Structural monitoring systems generate a large amount of 
data that must be analyzed and interpreted accurately to detect 
changes in structural behavior. However, data analysis and 
interpretation are often subjective, and researchers have 
suggested the need for the development of objective and 
automated data analysis methods [128]. 

E. Integration with Bridge Management Systems 

Structural monitoring systems need to be integrated with 
bridge management systems to enable decision-making based 
on real-time data. However, the integration of monitoring 
systems with bridge management systems is still a gap in the 
field, and researchers have suggested the need for the 
development of integrated systems to enable real-time decision-
making [129]. 

VI. FUTURE STUDIES 

 It is important to know about potential future studies and 
ideas in the field of structural monitoring of bridges because it 
can help us to stay up to date with the latest advances and trends 
in the field, and to anticipate the future directions and 
challenges of BHM. By knowing about potential future studies 
and ideas, we can also identify new opportunities for research 
and innovation and contribute to the development of more 
effective and efficient methods for monitoring the health of 
bridges. There are some potential future studies and ideas in the 
field of structural monitoring of bridges. By staying informed 
about these potential future studies and ideas, researchers, and 
practitioners in the field of BHM can help to shape the future of 
bridge monitoring and management and contribute to the 
development of a more sustainable and resilient transportation 
infrastructure. 

A. Integration of Artificial Intelligence and Machine 
Learning 

The integration of AI and ML technologies in BHM has 
shown promising results in recent years. The use of these 
technologies can help improve the accuracy and efficiency of 
data analysis and decision-making processes in BHM. For 
example, AI-based algorithms can be used to automatically 
detect structural damage or anomalies in bridge components 
based on real-time sensor data. ML algorithms can also be used 
to develop accurate and reliable models for predicting the 
structural behavior of bridges under different loading 
conditions [130]. Integration of multiple sources of data and 
information, such as sensor data, inspection reports, 
maintenance records, and weather forecasts, to enable more 
accurate and comprehensive assessments of bridge health 
[131]. 

B. Wireless Sensor Networks 

WSN technology has been widely used in BHM due to its 
low cost, easy installation, and high reliability. However, the 
current WSN technology still has some limitations in terms of 
data transmission speed, power consumption, and data security. 
Therefore, future studies can focus on developing more 
advanced WSN technologies, development of new sensors and 
technologies for bridge monitoring, such as fiber-optic sensors, 
WSNs, and UAVs that can overcome these limitations and 
provide more accurate and reliable data for BHM [132]. 

C. Non-Destructive Testing 

NDT techniques have been widely used in BHM to detect 
structural damage and defects in bridges. However, traditional 
NDT techniques are often time-consuming and expensive. 
Therefore, future studies can focus on developing more 
advanced NDT techniques that can provide faster and more 
accurate results at a lower cost. For example, advanced imaging 
techniques, such as X-ray computed tomography (CT) and 
magnetic resonance imaging (MRI), can be used to detect 
hidden damage and defects in bridge components [133]. 

D. Multi-Scale Modeling 

Multi-scale modeling is a promising approach for predicting 
the structural behavior of bridges under different loading 
conditions. It involves the development of models at different 
length scales, from the material level to the structural level, and 
the integration of these models to predict the overall structural 
behavior of the bridge. Therefore, future studies can focus on 
developing more advanced multi-scale modeling techniques 
that can accurately predict the structural behavior of bridges 
under complex loading conditions [134]. Advanced modeling 
and simulation techniques, including finite element analysis, 
discrete element modeling, and multi-scale modeling, are 
employed to enhance our understanding of bridge behavior 
under various loading and environmental conditions. These 
techniques also aid in predicting the future performance of 
bridges [135]. 

E. Cybersecurity 

As the use of digital technologies in BHM increases, there is 
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a growing concern about cybersecurity threats to bridge 
infrastructure. Therefore, future studies can focus on 
developing more advanced cybersecurity solutions that can 
ensure the security and reliability of BHM data and systems 
[136]. 

Therefore, cybersecurity is an essential aspect of BHM to 
ensure the safety and reliability of bridges. Here are some key 
considerations for cybersecurity in BHM. 

1. Data Security  

The data collected from sensors and other monitoring 
systems must be securely transmitted and stored to prevent 
unauthorized access and tampering. This can be achieved using 
encryption, authentication, and access control mechanisms 
[137]. 

2. Network Security 

The communication network used for BHM must be secure 
and resilient to prevent unauthorized access, interception, and 
disruption. This can be achieved using firewalls, intrusion 
detection systems, and other network security measures [138]. 

3. System Security 

The hardware and software systems used for BHM must be 
designed and configured with security in mind to prevent 
vulnerabilities and exploits. This can be achieved through 
secure design principles, regular software updates, and 
vulnerability testing [139]. 

4. Personnel Security 

The personnel involved in BHM must be trained and aware 
of cybersecurity risks and best practices to prevent human 
errors and malicious actions. This can be achieved through 
cybersecurity training and awareness programs [140].  

VII. CONCLUSION 

Through a comprehensive literature review, we have 
discussed the different approaches and techniques utilized in 
BHM, including sensor-based methods, ML algorithms, and 
model-based techniques, among others. We have also evaluated 
the strengths and limitations of each approach and compared 
them based on their accuracy, reliability, and practicality in 
real-world applications. Furthermore, we have addressed the 
challenges associated with BHM, including sensor placement, 
data acquisition, analysis, and interpretation, and provided 
potential solutions to overcome these obstacles. We have also 
identified crucial gaps in BHM that require further investigation 
and proposed future research directions that can contribute to 
the advancement of the field. The safety and integrity of our 
infrastructure rely heavily on the practice of BHM. By detecting 
potential problems early, BHM enables engineers and 
researchers to take corrective action before significant damage 
occurs. However, current approaches to BHM face several 
challenges and limitations, including sensor placement, data 
acquisition, analysis, and interpretation, as well as cost and 
complexity. 

To overcome these obstacles, innovative solutions are 
needed. One area of innovation is advanced sensors and data 

collection techniques. Embedding sensors directly into the 
structure or attaching them to its surface can provide detailed 
and comprehensive data on the bridge's condition, improving 
the accuracy and reliability of data collection while reducing 
the cost and complexity of monitoring systems. Another area 
where innovation can make a significant impact is the 
application of ML and AI to BHM data. By analyzing vast 
amounts of data and identifying patterns and anomalies that 
may be difficult for humans to detect, AI can improve the 
efficiency and accuracy of BHM systems. This could lead to 
more timely and effective identification of potential structural 
issues, reducing the risk of catastrophic failures. Wireless 
communication and power technologies are also key to 
improving BHM systems. These technologies can provide more 
scalable and adaptable monitoring systems, making it easier and 
cheaper to deploy BHM solutions across a wide range of 
structures. 

Finally, integrating BHM data with existing maintenance and 
repair workflows can help ensure that potential issues are 
addressed quickly and effectively, minimizing downtime, and 
maximizing the lifespan of the structure. Developing systems 
that facilitate this integration could help bridge owners and 
operators make more informed decisions about when and how 
to perform maintenance and repairs. Overall, continued 
research and development in BHM are vital to the safety and 
longevity of our critical infrastructure. By overcoming the 
challenges and limitations of current BHM systems through 
innovative solutions, we can develop more effective and 
efficient monitoring systems that prevent catastrophic failures 
and extend the lifespan of our bridges and other structures. 
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