Search results for: multiple linear regression
2895 Automated Algorithm for Removing Continuous Flame Spectrum Based On Sampled Linear Bases
Authors: Luis Arias, Jorge E. Pezoa, Daniel Sbárbaro
Abstract:
In this paper, an automated algorithm to estimate and remove the continuous baseline from measured spectra containing both continuous and discontinuous bands is proposed. The algorithm uses previous information contained in a Continuous Database Spectra (CDBS) to obtain a linear basis, with minimum number of sampled vectors, capable of representing a continuous baseline. The proposed algorithm was tested by using a CDBS of flame spectra where Principal Components Analysis and Non-negative Matrix Factorization were used to obtain linear bases. Thus, the radical emissions of natural gas, oil and bio-oil flames spectra at different combustion conditions were obtained. In order to validate the performance in the baseline estimation process, the Goodness-of-fit Coefficient and the Root Mean-squared Error quality metrics were evaluated between the estimated and the real spectra in absence of discontinuous emission. The achieved results make the proposed method a key element in the development of automatic monitoring processes strategies involving discontinuous spectral bands.
Keywords: Flame spectra, removing baseline, recovering spectrum.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17522894 Relationship between Codependency, Perceived Social Support, and Depression in Mothers of Children with Intellectual Disability
Authors: Sajed Yaghoubnezhad, Mina Karimi, Seyede Marjan Modirkhazeni
Abstract:
The goal of this research was to study the relationship between codependency, perceived social support and depression in mothers of children with intellectual disability (ID). The correlational method was used in this study. The research population is comprised of mothers of educable children with ID in the age range of 25 to 61 years. From among this, a sample of 251 individuals, in the multistage cluster sampling method, was selected from educational districts in Tehran, who responded to the Spann-Fischer Codependency Scale (SFCDS), the Social Support Questionnaire and the Beck Depression Inventory (BDI). The findings of this study indicate that among mothers of children with ID depression has a positive and significant correlation with codependency (P<0.01, r=0.4) and a negative and significant correlation with the total score of social support (P<0.01, r=-0.34). Moreover, the results of stepwise multiple regression analysis showed that codependency is allocated a higher variance than social support in explaining depression (R2=0.023).
Keywords: Codependency, social support, depression, mothers of children with ID.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14722893 A Martingale Residual Diagnostic for Logistic Regression Model
Authors: Entisar A. Elgmati
Abstract:
Martingale model diagnostic for assessing the fit of logistic regression model to recurrent events data are studied. One way of assessing the fit is by plotting the empirical standard deviation of the standardized martingale residual processes. Here we used another diagnostic plot based on martingale residual covariance. We investigated the plot performance under several types of model misspecification. Clearly the method has correctly picked up the wrong model. Also we present a test statistic that supplement the inspection of the two diagnostic. The test statistic power agrees with what we have seen in the plots of the estimated martingale covariance.
Keywords: Covariance, logistic model, misspecification, recurrent events.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18802892 Supply Chain Risk Management (SCRM): A Simplified Alternative for Implementing SCRM for Small and Medium Enterprises
Authors: Paul W. Murray, Marco Barajas
Abstract:
Recent changes in supply chains, especially globalization and collaboration, have created new risks for enterprises of all sizes. A variety of complex frameworks, often based on enterprise risk management strategies have been presented under the heading of Supply Chain Risk Management (SCRM). The literature on promotes the benefits of a robust SCRM strategy; however, implementing SCRM is difficult and resource demanding for Large Enterprises (LEs), and essentially out of reach for Small & Medium Enterprises (SMEs). This research debunks the idea that SCRM is necessary for all enterprises and instead proposes a simple and effective Vendor Selection Template (VST). Empirical testing and a survey of supply chain practitioners provide a measure of validation to the VST. The resulting VSTis a valuable contribution because is easy to use, provides practical results, and is sufficiently flexible to be universally applied to SMEs.
Keywords: Multiple Regression Analysis, Supply Chain Management, Risk Assessment, Vendor Selection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28422891 Development and Validation of Cylindrical Linear Oscillating Generator
Authors: Sungin Jeong
Abstract:
This paper presents a linear oscillating generator of cylindrical type for hybrid electric vehicle application. The focus of the study is the suggestion of the optimal model and the design rule of the cylindrical linear oscillating generator with permanent magnet in the back-iron translator. The cylindrical topology is achieved using equivalent magnetic circuit considering leakage elements as initial modeling. This topology with permanent magnet in the back-iron translator is described by number of phases and displacement of stroke. For more accurate analysis of an oscillating machine, it will be compared by moving just one-pole pitch forward and backward the thrust of single-phase system and three-phase system. Through the analysis and comparison, a single-phase system of cylindrical topology as the optimal topology is selected. Finally, the detailed design of the optimal topology takes the magnetic saturation effects into account by finite element analysis. Besides, the losses are examined to obtain more accurate results; copper loss in the conductors of machine windings, eddy-current loss of permanent magnet, and iron-loss of specific material of electrical steel. The considerations of thermal performances and mechanical robustness are essential, because they have an effect on the entire efficiency and the insulations of the machine due to the losses of the high temperature generated in each region of the generator. Besides electric machine with linear oscillating movement requires a support system that can resist dynamic forces and mechanical masses. As a result, the fatigue analysis of shaft is achieved by the kinetic equations. Also, the thermal characteristics are analyzed by the operating frequency in each region. The results of this study will give a very important design rule in the design of linear oscillating machines. It enables us to more accurate machine design and more accurate prediction of machine performances.
Keywords: Equivalent magnetic circuit, finite element analysis, hybrid electric vehicle, free piston engine, cylindrical linear oscillating generator
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13682890 Yawning and Cortisol as a Potential Biomarker for Early Detection of Multiple Sclerosis
Authors: Simon B. N. Thompson
Abstract:
Cortisol is essential to the regulation of the immune system and yawning is a pathological symptom of multiple sclerosis (MS). Electromyography activity (EMG) in the jaw muscles typically rises when the muscles are moved and with yawning is highly correlated with cortisol levels in healthy people. Saliva samples from 59 participants were collected at the start and after yawning, or at the end of the presentation of yawning-provoking stimuli, in the absence of a yawn, together with EMG data and questionnaire data: Hospital Anxiety and Depression Scale, Yawning Susceptibility Scale, General Health Questionnaire, demographic, health details. Exclusion criteria: chronic fatigue, diabetes, fibromyalgia, heart condition, high blood pressure, hormone replacement therapy, multiple sclerosis, stroke. Significant differences were found between the saliva cortisol samples for the yawners, t (23) = -4.263, p = 0.000, as compared with the non-yawners between rest and post-stimuli, which was nonsignificant. Significant evidence was found to support the Thompson Cortisol Hypothesis suggesting that rises in cortisol levels are associated with yawning. Further research is exploring the use of cortisol as an early diagnostic tool for MS. Ethics approval granted and professional code of conduct, confidentiality, and safety issues are approved therein.Keywords: Cortisol, Multiple Sclerosis, Yawning, Thompson’s Cortisol Hypothesis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23722889 Relationship between Behavioral Inhibition/Approach System and Perceived Stress: With White Blood Cell in Multiple Sclerosis Patients
Authors: Amin Alvani
Abstract:
Multiple sclerosis (MS) is a chronic, often disabling disease in which the immune system attacks the myelin sheath of neurons in the central nervous system. The purpose of this study was to explore the correlation between the Behavioral Inhibition/Approach System (BIS-BAS) and Perceived Stress (PS), while controlling for White Blood Cell (WBC) count. 60 MS patients (36.7% male, 63.3% female; aged 15-65 years) participated in this study. They completed a demographic questionnaire, underwent a complete blood cell (CBC) test, filled out the Behavioral Activation and Behavioral Inhibition Scale (BIS-BAS), and responded to the Perceived Stress Questionnaire (PSS-14). The results indicated a significant relationship between the BAS-Reward Responsiveness (BAS-RR) subscale and PS, particularly in a subset of MS patients with increased WBC counts.
Keywords: Behavioral inhibition/approach system, multiple sclerosis, perceived stress, white blood cell.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 602888 Finite-Horizon Tracking Control for Repetitive Systems with Uncertain Initial Conditions
Authors: Sung Wook Yun, Yun Jong Choi, Kyong-min Lee, Poogyeon Park*
Abstract:
Repetitive systems stand for a kind of systems that perform a simple task on a fixed pattern repetitively, which are widely spread in industrial fields. Hence, many researchers have been interested in those systems, especially in the field of iterative learning control (ILC). In this paper, we propose a finite-horizon tracking control scheme for linear time-varying repetitive systems with uncertain initial conditions. The scheme is derived both analytically and numerically for state-feedback systems and only numerically for output-feedback systems. Then, it is extended to stable systems with input constraints. All numerical schemes are developed in the forms of linear matrix inequalities (LMIs). A distinguished feature of the proposed scheme from the existing iterative learning control is that the scheme guarantees the tracking performance exactly even under uncertain initial conditions. The simulation results demonstrate the good performance of the proposed scheme.Keywords: Finite time horizon, linear matrix inequality (LMI), repetitive system, uncertain initial condition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18932887 Preconditioned Mixed-Type Splitting Iterative Method For Z-Matrices
Authors: Li Jiang, Baoguang Tian
Abstract:
In this paper, we present the preconditioned mixed-type splitting iterative method for solving the linear systems, Ax = b, where A is a Z-matrix. And we give some comparison theorems to show that the convergence rate of the preconditioned mixed-type splitting iterative method is faster than that of the mixed-type splitting iterative method. Finally, we give a numerical example to illustrate our results.Keywords: Z-matrix, mixed-type splitting iterative method, precondition, comparison theorem, linear system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12032886 Higher-Dimensional Quantum Cryptography
Authors: Bradley Christensen, Kevin T. McCusker, Daniel J. Gauthier, Daniel Kumor, Venkat Chandar, P. G. Kwiat
Abstract:
We report on a high-speed quantum cryptography system that utilizes simultaneous entanglement in polarization and in “time-bins". With multiple degrees of freedom contributing to the secret key, we can achieve over ten bits of random entropy per detected coincidence. In addition, we collect from multiple spots o the downconversion cone to further amplify the data rate, allowing usto achieve over 10 Mbits of secure key per second.Keywords: Downconversion, Hyper-entanglement, Quantum Cryptography
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16942885 Life Satisfaction of Non-Luxembourgish and Native Luxembourgish Postgraduate Students
Authors: Chrysoula Karathanasi, Senad Karavdic, Angela Odero, Michèle Baumann
Abstract:
It is not only the economic determinants that impact on life conditions, but maintaining a good level of life satisfaction (LS) may also be an important challenge currently. In Luxembourg, university students receive financial aid from the government. They are then registered at the Centre for Documentation and Information on Higher Education (CEDIES). Luxembourg is built on migration with almost half its population consisting of foreigners. It is upon this basis that our research aims to analyze the associations with mental health factors (health satisfaction, psychological quality of life, worry), perceived financial situation, career attitudes (adaptability, optimism, knowledge, planning) and LS, for non-Luxembourgish and native postgraduate students. Between 2012 and 2013, postgraduates registered at CEDIES were contacted by post and asked to participate in an online survey with either the option of English or French. The study population comprised of 644 respondents. Our statistical analysis excluded: those born abroad who had Luxembourgish citizenship, or those born in Luxembourg who did not have citizenship. Two groups were formed one consisting 147 non-Luxembourgish and the other 284 natives. A single item measured LS (1=not at all satisfied to 10=very satisfied). Bivariate tests, correlations and multiple linear regression models were used in which only significant relationships (p<0.05) were integrated. Among the two groups no differences were found between LS indicators (7.8/10 non-Luxembourgish; 8.0/10 natives) as both were higher than the European indicator of 7.2/10 (for 25-34 years). In the case of non-Luxembourgish students, they were older than natives (29.3 years vs. 26.3 years) perceived their financial situation as more difficult, and a higher percentage of their parents had an education level higher than a Bachelor's degree (father 59.2% vs 44.6% for natives; mother 51.4% vs 33.7% for natives). In addition, the father’s education was related to the LS of postgraduates and the higher was the score, the greater was the contribution to LS. Whereas for native students, when their scores of health satisfaction and career optimism were higher, their LS’ score was higher. For both groups their LS was linked to mental health-related factors, perception of their financial situation, career optimism, adaptability and planning. The higher the psychological quality of life score was, the greater the LS of postgraduates’ was. Good health and positive attitudes related to the job market enhanced their LS indicator.
Keywords: Career attitudes, fathers’ education level, life satisfaction, mental health.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14942884 An Agent-Based Approach to Vehicle Routing Problem
Authors: Dariusz Barbucha, Piotr Jedrzejowicz
Abstract:
The paper proposes and validates a new method of solving instances of the vehicle routing problem (VRP). The approach is based on a multiple agent system paradigm. The paper contains the VRP formulation, an overview of the multiple agent environment used and a description of the proposed implementation. The approach is validated experimentally. The experiment plan and the discussion of experiment results follow.
Keywords: multi-agent systems, population-based methods, vehiclerouting problem.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22452883 Reducing Uncertainty of Monte Carlo Estimated Fatigue Damage in Offshore Wind Turbines Using FORM
Authors: Jan-Tore H. Horn, Jørgen Juncher Jensen
Abstract:
Uncertainties related to fatigue damage estimation of non-linear systems are highly dependent on the tail behaviour and extreme values of the stress range distribution. By using a combination of the First Order Reliability Method (FORM) and Monte Carlo simulations (MCS), the accuracy of the fatigue estimations may be improved for the same computational efforts. The method is applied to a bottom-fixed, monopile-supported large offshore wind turbine, which is a non-linear and dynamically sensitive system. Different curve fitting techniques to the fatigue damage distribution have been used depending on the sea-state dependent response characteristics, and the effect of a bi-linear S-N curve is discussed. Finally, analyses are performed on several environmental conditions to investigate the long-term applicability of this multistep method. Wave loads are calculated using state-of-the-art theory, while wind loads are applied with a simplified model based on rotor thrust coefficients.Keywords: Fatigue damage, FORM, monopile, monte carlo simulation, reliability, wind turbine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11892882 FIR Filter Design via Linear Complementarity Problem, Messy Genetic Algorithm, and Ising Messy Genetic Algorithm
Authors: A.M. Al-Fahed Nuseirat, R. Abu-Zitar
Abstract:
In this paper the design of maximally flat linear phase finite impulse response (FIR) filters is considered. The problem is handled with totally two different approaches. The first one is completely deterministic numerical approach where the problem is formulated as a Linear Complementarity Problem (LCP). The other one is based on a combination of Markov Random Fields (MRF's) approach with messy genetic algorithm (MGA). Markov Random Fields (MRFs) are a class of probabilistic models that have been applied for many years to the analysis of visual patterns or textures. Our objective is to establish MRFs as an interesting approach to modeling messy genetic algorithms. We establish a theoretical result that every genetic algorithm problem can be characterized in terms of a MRF model. This allows us to construct an explicit probabilistic model of the MGA fitness function and introduce the Ising MGA. Experimentations done with Ising MGA are less costly than those done with standard MGA since much less computations are involved. The least computations of all is for the LCP. Results of the LCP, random search, random seeded search, MGA, and Ising MGA are discussed.Keywords: Filter design, FIR digital filters, LCP, Ising model, MGA, Ising MGA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20232881 Exponential Stability of Linear Systems under a Class of Unbounded Perturbations
Authors: Safae El Alaoui, Mohamed Ouzahra
Abstract:
In this work, we investigate the exponential stability of a linear system described by x˙ (t) = Ax(t) − ρBx(t). Here, A generates a semigroup S(t) on a Hilbert space, the operator B is supposed to be of Desch-Schappacher type, which makes the investigation more interesting in many applications. The case of Miyadera-Voigt perturbations is also considered. Sufficient conditions are formulated in terms of admissibility and observability inequalities and the approach is based on some energy estimates. Finally, the obtained results are applied to prove the uniform exponential stabilization of bilinear partial differential equations.
Keywords: Exponential stabilization, unbounded operator, Desch-Schappacher, Miyadera-Voigt operator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3662880 Conceptional Design of a Hyperloop Capsule with Linear Induction Propulsion System
Authors: Ahmed E. Hodaib, Samar F. Abdel Fattah
Abstract:
High-speed transportation is a growing concern. To develop high-speed rails and to increase high-speed efficiencies, the idea of Hyperloop was introduced. The challenge is to overcome the difficulties of managing friction and air-resistance which become substantial when vehicles approach high speeds. In this paper, we are presenting the methodologies of the capsule design which got a design concept innovation award at SpaceX competition in January, 2016. MATLAB scripts are written for the levitation and propulsion calculations and iterations. Computational Fluid Dynamics (CFD) is used to simulate the air flow around the capsule considering the effect of the axial-flow air compressor and the levitation cushion on the air flow. The design procedures of a single-sided linear induction motor are analyzed in detail and its geometric and magnetic parameters are determined. A structural design is introduced and Finite Element Method (FEM) is used to analyze the stresses in different parts. The configuration and the arrangement of the components are illustrated. Moreover, comments on manufacturing are made.Keywords: High-speed transportation, Hyperloop, railways transportation, single-sided linear induction motor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 36682879 The Kinetic of Biodegradation Lignin in Water Hyacinth (Eichhornia Crassipes) by Phanerochaete Chrysosporium using Solid State Fermentation (SSF) Method for Bioethanol Production, Indonesia
Authors: Eka Sari, Siti Syamsiah, Hary Sulistyo, Muslikhin
Abstract:
Lignocellulosic materials are considered the most abundant renewable resource available for the Bioethanol Production. Water Hyacinth is one of potential raw material of the world-s worst aquatic plant as a feedstock to produce Bioethanol. The purposed this research is obtain reduced of matter for biodegradation lignin in Biological pretreatment with White Rot Fungi eg. Phanerochaete Chrysosporium using Solid state Fermentation methods. Phanerochaete Chrysosporium is known to have the best ability to degraded lignin, but simultaneously it can also degraded cellulose and hemicelulose. During 8 weeks incubation, water hyacinth occurred loss of weight reached 34,67%, while loss of lignin reached 67,21%, loss of cellulose reached 11,01% and loss of hemicellulose reached 36,56%. The kinetic of losses lignin using regression linear plot, the results is obtained constant rate (k) of reduction lignin is -0.1053 and the equation of reduction of lignin is y = wo - 0, 1.53 xKeywords: Biodegradation, lignin, PhanerochaeteChrysosporium, SSF, Water Hyacinth, Bioethanol
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25802878 Fractal Patterns for Power Quality Detection Using Color Relational Analysis Based Classifier
Authors: Chia-Hung Lin, Mei-Sung Kang, Cong-Hui Huang, Chao-Lin Kuo
Abstract:
This paper proposes fractal patterns for power quality (PQ) detection using color relational analysis (CRA) based classifier. Iterated function system (IFS) uses the non-linear interpolation in the map and uses similarity maps to construct various fractal patterns of power quality disturbances, including harmonics, voltage sag, voltage swell, voltage sag involving harmonics, voltage swell involving harmonics, and voltage interruption. The non-linear interpolation functions (NIFs) with fractal dimension (FD) make fractal patterns more distinguishing between normal and abnormal voltage signals. The classifier based on CRA discriminates the disturbance events in a power system. Compared with the wavelet neural networks, the test results will show accurate discrimination, good robustness, and faster processing time for detecting disturbing events.Keywords: Power Quality (PQ), Color Relational Analysis(CRA), Iterated Function System (IFS), Non-linear InterpolationFunction (NIF), Fractal Dimension (FD).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16482877 Optimal Planning of Waste-to-Energy through Mixed Integer Linear Programming
Authors: S. T. Tan, H. Hashim, W. S. Ho, C. T. Lee
Abstract:
Rapid economic development and population growth in Malaysia had accelerated the generation of solid waste. This issue gives pressure for effective management of municipal solid waste (MSW) to take place in Malaysia due to the increased cost of landfill. This paper discusses optimal planning of waste-to-energy (WTE) using a combinatorial simulation and optimization model through mixed integer linear programming (MILP) approach. The proposed multi-period model is tested in Iskandar Malaysia (IM) as case study for a period of 12 years (2011 -2025) to illustrate the economic potential and tradeoffs involved in this study. In this paper, 3 scenarios have been used to demonstrate the applicability of the model: (1) Incineration scenario (2) Landfill scenario (3) Optimal scenario. The model revealed that the minimum cost of electricity generation from 9,995,855 tonnes of MSW is estimated as USD 387million with a total electricity generation of 50MW /yr in the optimal scenario.Keywords: Mixed Integer Linear Programming (MILP), optimization, solid waste management (SWM), Waste-to-energy (WTE).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29882876 Dimension Reduction of Microarray Data Based on Local Principal Component
Authors: Ali Anaissi, Paul J. Kennedy, Madhu Goyal
Abstract:
Analysis and visualization of microarraydata is veryassistantfor biologists and clinicians in the field of diagnosis and treatment of patients. It allows Clinicians to better understand the structure of microarray and facilitates understanding gene expression in cells. However, microarray dataset is a complex data set and has thousands of features and a very small number of observations. This very high dimensional data set often contains some noise, non-useful information and a small number of relevant features for disease or genotype. This paper proposes a non-linear dimensionality reduction algorithm Local Principal Component (LPC) which aims to maps high dimensional data to a lower dimensional space. The reduced data represents the most important variables underlying the original data. Experimental results and comparisons are presented to show the quality of the proposed algorithm. Moreover, experiments also show how this algorithm reduces high dimensional data whilst preserving the neighbourhoods of the points in the low dimensional space as in the high dimensional space.
Keywords: Linear Dimension Reduction, Non-Linear Dimension Reduction, Principal Component Analysis, Biologists.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15742875 Vague Multiple Criteria Decision Making Analysis Method for Fighter Aircraft Selection
Authors: C. Ardil
Abstract:
Fighter aircraft selection is one of the most critical strategies for defense multiple criteria decision-making analysis to increase the decisive power of air defense and its superior power in the defense strategy. Vague set theory is an adequate approach for modeling vagueness, uncertainty, and imprecision in decision-making problems. This study integrates vague set theory and the technique for order of preference by similarity to ideal solution (TOPSIS) to support fighter aircraft selection. The proposed method is applied in the selection of fighter aircraft for the Air Force. In the proposed approach, the ratings of alternatives and the importance weights of criteria for fighter aircraft selection are represented by the vague set theory. Finally, an illustrative example for fighter aircraft selection is given to demonstrate the applicability and effectiveness of the proposed approach. The fighter aircraft candidates were selected under six criteria including costability, payloadability, maneuverability, speedability, stealthility, and survivability. Analysis results show that the best fighter aircraft is selected with the highest closeness coefficient value. The proposed method can also be applied to solve other multiple criteria decision analysis problems.
Keywords: fighter aircraft selection, vague set theory, fuzzy set theory, neutrosophic set theory, multiple criteria decision making analysis, MCDMA, TOPSIS
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5412874 Feature Reduction of Nearest Neighbor Classifiers using Genetic Algorithm
Authors: M. Analoui, M. Fadavi Amiri
Abstract:
The design of a pattern classifier includes an attempt to select, among a set of possible features, a minimum subset of weakly correlated features that better discriminate the pattern classes. This is usually a difficult task in practice, normally requiring the application of heuristic knowledge about the specific problem domain. The selection and quality of the features representing each pattern have a considerable bearing on the success of subsequent pattern classification. Feature extraction is the process of deriving new features from the original features in order to reduce the cost of feature measurement, increase classifier efficiency, and allow higher classification accuracy. Many current feature extraction techniques involve linear transformations of the original pattern vectors to new vectors of lower dimensionality. While this is useful for data visualization and increasing classification efficiency, it does not necessarily reduce the number of features that must be measured since each new feature may be a linear combination of all of the features in the original pattern vector. In this paper a new approach is presented to feature extraction in which feature selection, feature extraction, and classifier training are performed simultaneously using a genetic algorithm. In this approach each feature value is first normalized by a linear equation, then scaled by the associated weight prior to training, testing, and classification. A knn classifier is used to evaluate each set of feature weights. The genetic algorithm optimizes a vector of feature weights, which are used to scale the individual features in the original pattern vectors in either a linear or a nonlinear fashion. By this approach, the number of features used in classifying can be finely reduced.Keywords: Feature reduction, genetic algorithm, pattern classification, nearest neighbor rule classifiers (k-NNR).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17682873 Power Efficient OFDM Signals with Reduced Symbol's Aperiodic Autocorrelation
Authors: Ibrahim M. Hussain
Abstract:
Three new algorithms based on minimization of autocorrelation of transmitted symbols and the SLM approach which are computationally less demanding have been proposed. In the first algorithm, autocorrelation of complex data sequence is minimized to a value of 1 that results in reduction of PAPR. Second algorithm generates multiple random sequences from the sequence generated in the first algorithm with same value of autocorrelation i.e. 1. Out of these, the sequence with minimum PAPR is transmitted. Third algorithm is an extension of the second algorithm and requires minimum side information to be transmitted. Multiple sequences are generated by modifying a fixed number of complex numbers in an OFDM data sequence using only one factor. The multiple sequences represent the same data sequence and the one giving minimum PAPR is transmitted. Simulation results for a 256 subcarrier OFDM system show that significant reduction in PAPR is achieved using the proposed algorithms.
Keywords: Aperiodic autocorrelation, OFDM, PAPR, SLM, wireless communication.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17222872 Fuzzy EOQ Models for Deteriorating Items with Stock Dependent Demand and Non-Linear Holding Costs
Authors: G. C. Mahata, A. Goswami
Abstract:
This paper deals with infinite time horizon fuzzy Economic Order Quantity (EOQ) models for deteriorating items with stock dependent demand rate and nonlinear holding costs by taking deterioration rate θ0 as a triangular fuzzy number (θ0 −δ 1, θ0, θ0 +δ 2), where 1 2 0 0 <δ ,δ <θ are fixed real numbers. The traditional parameters such as unit cost and ordering cost have been kept constant but holding cost is considered to vary. Two possibilities of variations in the holding cost function namely, a non-linear function of the length of time for which the item is held in stock and a non-linear function of the amount of on-hand inventory have been used in the models. The approximate optimal solution for the fuzzy cost functions in both these cases have been obtained and the effect of non-linearity in holding costs is studied with the help of a numerical example.
Keywords: Inventory Model, Deterioration, Holding Cost, Fuzzy Total Cost, Extension Principle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18142871 Can Physical Activity and Dietary Fat Intake Influence Body Mass Index in a Cross-sectional Correlational Design?
Authors: D.O. Omondi, L.O.A. Othuon, G.M. Mbagaya
Abstract:
The purpose of this study was to determine the influence of physical activity and dietary fat intake on Body Mass Index (BMI) of lecturers within a higher learning institutionalized setting. The study adopted a Cross-sectional Correlational Design and included 120 lecturers selected proportionately by simple random sampling techniques from a population of 600 lecturers. Data was collected using questionnaires, which had sections including physical activity checklist adopted from the international physical activity questionnaire (IPAQ), 24-hour food recall, anthropometric measurements mainly weight and height. Analysis involved the use of bivariate correlations and linear regression. A significant inverse association was registered between BMI and duration (in minutes) spent doing moderate intense physical activity per day (r=-0.322, p<0.01). Physical activity also predicted BMI (r2=0.096, F=13.616, β=-3.22, t=-3.69, n=120, P<0.01). However, the association between Body Mass Index and dietary fat was not significant (r=0.038, p>0.05). Physical activity emerged as a more powerful determinant of BMI compared to dietary fat intake.Keywords: Physical activity, dietary fat intake, Body MassIndex, Kenya.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17112870 The Validity Range of LSDP Robust Controller by Exploiting the Gap Metric Theory
Authors: Ali Ameur Haj Salah, Tarek Garna, Hassani Messaoud
Abstract:
This paper attempts to define the validity domain of LSDP (Loop Shaping Design Procedure) controller system, by determining the suitable uncertainty region, so that linear system be stable. Indeed the LSDP controller cannot provide stability for any perturbed system. For this, we will use the gap metric tool that is introduced into the control literature for studying robustness properties of feedback systems with uncertainty. A 2nd order electric linear system example is given to define the validity domain of LSDP controller and effectiveness gap metric.
Keywords: LSDP, Gap metric, Robust Control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15052869 A Comparison between Heuristic and Meta-Heuristic Methods for Solving the Multiple Traveling Salesman Problem
Authors: San Nah Sze, Wei King Tiong
Abstract:
The multiple traveling salesman problem (mTSP) can be used to model many practical problems. The mTSP is more complicated than the traveling salesman problem (TSP) because it requires determining which cities to assign to each salesman, as well as the optimal ordering of the cities within each salesman's tour. Previous studies proposed that Genetic Algorithm (GA), Integer Programming (IP) and several neural network (NN) approaches could be used to solve mTSP. This paper compared the results for mTSP, solved with Genetic Algorithm (GA) and Nearest Neighbor Algorithm (NNA). The number of cities is clustered into a few groups using k-means clustering technique. The number of groups depends on the number of salesman. Then, each group is solved with NNA and GA as an independent TSP. It is found that k-means clustering and NNA are superior to GA in terms of performance (evaluated by fitness function) and computing time.Keywords: Multiple Traveling Salesman Problem, GeneticAlgorithm, Nearest Neighbor Algorithm, k-Means Clustering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32342868 The Multi-Layered Perceptrons Neural Networks for the Prediction of Daily Solar Radiation
Authors: Radouane Iqdour, Abdelouhab Zeroual
Abstract:
The Multi-Layered Perceptron (MLP) Neural networks have been very successful in a number of signal processing applications. In this work we have studied the possibilities and the met difficulties in the application of the MLP neural networks for the prediction of daily solar radiation data. We have used the Polack-Ribière algorithm for training the neural networks. A comparison, in term of the statistical indicators, with a linear model most used in literature, is also performed, and the obtained results show that the neural networks are more efficient and gave the best results.Keywords: Daily solar radiation, Prediction, MLP neural networks, linear model
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13292867 On the Algorithmic Iterative Solutions of Conjugate Gradient, Gauss-Seidel and Jacobi Methods for Solving Systems of Linear Equations
Authors: H. D. Ibrahim, H. C. Chinwenyi, H. N. Ude
Abstract:
In this paper, efforts were made to examine and compare the algorithmic iterative solutions of conjugate gradient method as against other methods such as Gauss-Seidel and Jacobi approaches for solving systems of linear equations of the form Ax = b, where A is a real n x n symmetric and positive definite matrix. We performed algorithmic iterative steps and obtained analytical solutions of a typical 3 x 3 symmetric and positive definite matrix using the three methods described in this paper (Gauss-Seidel, Jacobi and Conjugate Gradient methods) respectively. From the results obtained, we discovered that the Conjugate Gradient method converges faster to exact solutions in fewer iterative steps than the two other methods which took much iteration, much time and kept tending to the exact solutions.
Keywords: conjugate gradient, linear equations, symmetric and positive definite matrix, Gauss-Seidel, Jacobi, algorithm
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4752866 Convergence Analysis of Training Two-Hidden-Layer Partially Over-Parameterized ReLU Networks via Gradient Descent
Authors: Zhifeng Kong
Abstract:
Over-parameterized neural networks have attracted a great deal of attention in recent deep learning theory research, as they challenge the classic perspective of over-fitting when the model has excessive parameters and have gained empirical success in various settings. While a number of theoretical works have been presented to demystify properties of such models, the convergence properties of such models are still far from being thoroughly understood. In this work, we study the convergence properties of training two-hidden-layer partially over-parameterized fully connected networks with the Rectified Linear Unit activation via gradient descent. To our knowledge, this is the first theoretical work to understand convergence properties of deep over-parameterized networks without the equally-wide-hidden-layer assumption and other unrealistic assumptions. We provide a probabilistic lower bound of the widths of hidden layers and proved linear convergence rate of gradient descent. We also conducted experiments on synthetic and real-world datasets to validate our theory.Keywords: Over-parameterization, Rectified Linear Units (ReLU), convergence, gradient descent, neural networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 897