The Validity Range of LSDP Robust Controller by Exploiting the Gap Metric Theory
Authors: Ali Ameur Haj Salah, Tarek Garna, Hassani Messaoud
Abstract:
This paper attempts to define the validity domain of LSDP (Loop Shaping Design Procedure) controller system, by determining the suitable uncertainty region, so that linear system be stable. Indeed the LSDP controller cannot provide stability for any perturbed system. For this, we will use the gap metric tool that is introduced into the control literature for studying robustness properties of feedback systems with uncertainty. A 2nd order electric linear system example is given to define the validity domain of LSDP controller and effectiveness gap metric.
Keywords: LSDP, Gap metric, Robust Control.
Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1100438
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1502References:
[1] SL. Ballois, G. Duc, “H∞ control of a satellite axis: Loop shaping, controller reduction, and μ-analysis”. contr Eng Practice 1996; 4 (7): 1001-7
[2] Georgiou, T.T., and M. Smith, “Optimal Robustness in the Gap Metric”. IEEE Transactions on Automatic Control, 35(6):673-686, 1990.
[3] Georgiou,T.T., “On the computation of the gap metric”. Systems Control Letters, vol. 11, 1988, p. 253–257.
[4] Georgiou,T.T and M. Smith, “Robust stabilization in the gap metric: controller design for distributed plants”. IEEE Trans. Automat. Control 37 (8) (1992) 1133–1143.
[5] K. Glover, “All optimal Hankel-norm approximations of linear multivariable systems and their L∞-error bounds”. International Journal of Control, 39(6), (1984) 1115- 93.
[6] K. Glover and D. McFarlane, “Robust stabilization of normalized coprime factor plant descriptions with H∞-bounded uncertainty”. IEEE Transactions on Automatic Control, vol. 34, pp. 821-830, 1989.
[7] K. Glover and J. Doyle, “State-Space Formulae for all Stabilizing Controllers that Satisfy an H∞-Norm Bound and Relations to Risk Sensitivity”. Systems & Control Letters, 11:167- 172, 1988.
[8] K. Glover, AP. Dowling, “Control of combustion oscillations via H∞ loop shaping, μ-analysis and integral quadratic constraints”. Automatica 2003; 39(2): 219-31.
[9] J. Jayender, RV. Patel, S. Nikumb, M. Ostojic, “H∞loop shaping controller for shaped memory alloy actuators”. In: Proceedings of the IEEE conference on decision and control, 2005, p. 653-8.
[10] S. Kaitwanidvilai, M. Parnichkun, “Genetic algorithm-based fixedstructure robust H∞ loop shaping control of a pneumatic servo system”. J Robot Mechatron 2004; 16 (4): 362-73.
[11] D. Limebeer and M. Green, “Linear Robust Control”. Prentice-Hall, 1996.
[12] D. McFarlane and K. Glover, “Robust Controller Design using Normalized Coprime Factor Plant Descriptions”. Lecture Notes in Control and Information Science. Springer Verlag, Berlin, 1990.
[13] D. McFarlane and K. Glover, “A Loop Shaping Design Procedure Using H∞ Synthesis”. IEEE Transactions on Automatic Control, 37(6):759- 769, 1992.
[14] S. Skogestad, I. Postlethwaite, “Multivariable feedback control: Analysis and design”. John Wiley & Sons, 2005.
[15] EL-Sakkary A.K, “The gap metric: Rbustness of stabilization of feedback system,”IEEE Trans.Automat.contr., vol.AC-30, pp.240-247, Mar.1985.
[16] M. Vidyasagar and H. Kimura, “Robust controllers for uncertain linear multivariable systems”. Automatica, 22:85-94, 1986.
[17] G. Zames and A.K. El-Sakkary, “Unstable systems and feedback: the gap metric”. in: Proceedings of the Allerton Conference, 1980, pp. 380– 385.
[18] S.Q. Zhu, M.L.J. Hautus, C. Praagman, “Sufficient conditions for robust BIBO stabilisation: given by the gap metric”. Systems Control Lett. 11 (1988) 53–59.