
  

Abstract—Fighter aircraft selection is one of the most critical 

strategies for defense multiple criteria decision-making analysis to 

increase the decisive power of air defense and its superior power in 

the defense strategy. Vague set theory is an adequate approach for 

modeling vagueness, uncertainty, and imprecision in decision-

making problems. This study integrates vague set theory and the 

technique for order of preference by similarity to ideal solution 

(TOPSIS) to support fighter aircraft selection. The proposed method 

is applied in the selection of fighter aircraft for the Air Force. In the 

proposed approach, the ratings of alternatives and the importance 

weights of criteria for fighter aircraft selection are represented by the 

vague set theory. Finally, an illustrative example for fighter aircraft 

selection is given to demonstrate the applicability and effectiveness 

of the proposed approach.  The fighter aircraft candidates were 

selected under six criteria including costability, payloadability, 

maneuverability, speedability, stealthility, and survivability. 

Analysis results show that the best fighter aircraft is selected with 

the highest closeness coefficient value. The proposed method can 

also be applied to solve other multiple criteria decision analysis 

problems. 

 

Keywords—fighter aircraft selection, vague set theory, fuzzy set 

theory, neutrosophic set theory, multiple criteria decision making 

analysis, MCDMA, TOPSIS.  

I. INTRODUCTION 

ULTIPLE criteria decision making analysis 

(MCDMA) is an established branch of decision 

making theory[1-57]. MCDMA is a branch of a general 

class of operations research models that deal with decision 

problems in the presence of a set of often conflicting decision 

criteria. The MCDMA approach requires choosing among 

decision alternatives defined according to their 

characteristics. MCDMA problems are assumed to have a 

predetermined, limited number of decision alternatives. Thus, 

solving an MCDMA problem involves sorting, ranking, and 

selection processes.  

Therefore, multiple criteria decision-making problem is a 

type of problem in which all alternatives in the selection set 

can be evaluated according to a set of evaluation criteria. An 

MCDMA problem can be briefly expressed in matrix format 

as  1,..., ,1Ia a a i I=    are possible alternatives that 

decision makers should choose,  1,..., ,1jg g g j J=   are 

the criteria by which alternative performance is measured, ijx  

is the rating of alternative ia  relative to the jg criterion, and

 1,..., ,1j j J  =   , j  is the weight of the jg  

criterion. 
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MCDMA approaches can be generally viewed as 

alternative methods for combining information from a 

problem's decision matrix with additional information from 

the decision-maker to determine a final ranking or selection 

among alternatives. Apart from the information contained in 

the decision matrix, all but the simplest MCDMA techniques 

require additional information from the decision-maker to 

arrive at a final ranking or selection. 

MCDMA problems and the evaluation processes often 

involve subjective evaluations and result in qualitatively 

imprecise data. Mathematical, engineering or management 

decisions are often made through available data and 

information, which is often vague, imprecise, and uncertain 

in nature. 

The decision-making process in engineering schemes, 

developed during the concept design phase is one of these 

typical situations, which often needs some method to deal 

with uncertain data and information that is difficult to define. 

During the design phase, designers often offer many 

alternatives. However, the subjective characteristics of the 

alternatives are often uncertain and need to be evaluated with 

insufficient knowledge and judgment of the decision maker. 

In ordinary set theory, the values of elements in a set are 

only two possibilities: present or absent in the set. The 

ordinary set theory cannot handle ambiguity and uncertainty. 

Fuzzy sets [58-60], intuitionistic sets [61-62], vague sets [63-

70], and neutrosophic sets [71-73] are considered 

generalizations of ordinary set theory to treat vagueness and 

uncertainty. A sentence is vague if and only if the sentence is 

neither absolutely true nor absolutely false.  

Fuzzy logic, is a form of multiple-valued logic which deals 

with imprecise information as a way of processing data by 

allowing partial set membership rather than definite set 

membership. Fuzzy logic is a computational approach based 

on degrees of truth rather than the usual true or false (1 or 0) 

Boolean logic. In fuzzy logic, the value (degrees) for 

linguistic variables can be between 0 and 1. When linguistic 

variables are used, these degrees can be handled with special 

functions called membership functions. Fuzzy logic 

represents the degrees of truth.  

In fuzzy set theory, a single membership value is assigned 

to each x ∈ U element in the universe of discourse. The single 

membership value contains both the evidence for and against 

x [53]. It cannot deal with two evidences individually, or even 

at the same duration. 

To solve this problem, the concept of vague set was 

introduced [53], and it allows interval-based membership 

function over point-based membership function. It is a further 

generalization of the fuzzy set theory. Vague set theory 
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becomes a promising tool for dealing with imprecise, vague, 

and uncertain information with enhanced performance but 

having complex problem-solving. 

Intuitionistic fuzzy sets [61] and interval valued 

intuitionistic fuzzy sets were also introduced. They can only 

handle incomplete information, not indeterminate 

information, and inconsistent information. 

To handle indeterminate data, the concept of neutrophic 

logic was introduced [71], which is also a multiple-valued 

logic based on neutrosophy. As a generalization of fuzzy 

logic, indeterminacy is included in neutrosophic logic. Fuzzy 

theory has failed when relationships are indeterminate. The 

inclusion of indeterminate information with fuzzy logic is 

nothing more than neutrosophic logic. To apply artificial 

intelligence, it is often necessary to compare different 

multiple-valued logic in complex problem-solving. Multiple-

valued logic is a nonordinary logic in which the truth values, 

that a proposition may have, are not restricted to two, 

representing only truth and falsity. 

The nature of such vagueness and uncertainty is 

neutrosophic rather than random, especially when it comes to 

subjective human judgments in decision making. Multiple 

valued logic theory provides a possibility to deal with such 

data and information that includes subjective characteristics 

of human nature in the decision-making process.  

 There exist various methods for solving MCDMA 

problems, for which the TOPSIS technique is one of the 

effective multiple criteria decision analysis methods [28]. 

The basic principle of the TOPSIS method is that the chosen 

alternative should have the shortest distance from the positive 

ideal solution and the farthest distance from the negative ideal 

solution. 

 In ordinary MCDMA methods, the ratings and weights of 

the criteria are known precisely. In the TOPSIS process, exact 

values are given to the weights of criteria and the performance 

ratings. The concept of TOPSIS was extended to develop a 

methodology for solving MCDM problems with interval data. 

A fuzzy version of the TOPSIS method based on fuzzy 

arithmetic operations was developed. This method was 

extended to solve group decision problems in a fuzzy 

environment. TOPSIS was extended to provide a fuzzy 

closeness coefficient via α-cut propagation. Most fuzzy 

versions of the TOPSIS method are efficient in overcoming 

the vagueness and uncertainty present in MCDMA problems, 

but their results are not able to include the hesitation present 

in the information provided by the decision-marker.  

 In real life, one may think that an object belongs to a set to 

a certain degree, but it is also possible to be unsure of this. In 

other words, the person has hesitations about the membership 

degree. In fuzzy set theory, there is no way to include this 

hesitation about the degree of suitability to which each 

alternative satisfies the decision maker's requirement. 

 To include this unknown degree in the membership 

function, the concept of vague sets was proposed. Vague sets 

are a generalized form of fuzzy sets. Vague sets are used to 

handle multiple criteria fuzzy decision-making problems. 

Some new techniques were used in vague set theory. Using 

vague sets, the degree of satisfiability and non-satisfiability 

of each alternative was presented, allowing the decision-

maker to assign a different degree of importance to each 

criterion. A similar approach was proposed but with a more 

efficient score function. These proposed techniques provide a 

different way to assist the decision maker effectively in 

decision making. 

Therefore, a more efficient TOPSIS was developed to 

solve MCDMA problems with vague sets. Then, the 

applicability and effectiveness of the proposed method were 

demonstrated with a numerical example of the fighter aircraft 

selection process. 

The remaining of this paper is organized as follows. In the 

next section TOPSIS method is presented with a stepwise 

description. The definition and notations of vague sets are 

briefly introduced. MCDMA based on vague sets is then 

proposed in section II. A numerical example of the fighter 

aircraft selection process and a concise conclusion are given 

in Sections III and VI, respectively.  

II. METHODOLOGY 

In this section, the basic definition of the membership 

functions of fuzzy set, vague set / intuitionistic fuzzy set, and 

neutrosophic set are recalled. Let there be a universe of 

discourse U , in which an element of U is denoted by iu . 

A. Fuzzy Set Theory 

 

Definition 1. If U is a collection of objects denoted 

generically by iu  then a fuzzy set A in U is a set of ordered 

pairs: 

 

 ( , ( )) | ( ) [0,1]i A i A i iA u u u u U =                                      (1) 

 

where ( )A iu  is the membership function that maps X to the 

membership space M and ( )A iu ) is the grade of membership 

(also degree of compatibility or degree of truth) of iu  in A. 

 

B. Intuitionistic Fuzzy Set Theory 

 

Definition 2. Let a set U be fixed.  An intuitionistic fuzzy 

set A in U is object of the form given by 

 

 ( , ( ), ( )) :i A i A i iA u u v u u U=                                         (2) 

 

where ( ) [0,1]A iu  , ( ) [0,1]A iv u  , denoted by ( )iA u is an 

intuitionistic fuzzy set, ( )A iu and ( )A iv u  indicate the 

membership degree and nonmembership degree of element 

iu U  to set A, respectively.   

Additionally, ( ) 1 ( ) ( )A i A i A iu u v u = − − is the hesitation 

degree of iu  to A. Obviously, one has 0 ( ) ( ) 1A i A iu v u + 

,  
iu U  . If a membership function At denotes the upper 

bounds and a non-membership function Af denotes the lower 

bounds on ( )A iu , then, the degree of membership of iu in 

the intuitionistic fuzzy set A is bounded to a subinterval 

[ ( ),1 ( )]A i A it u f u− . 
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The interval [ ( ),1 ( )]A i A it u f u− is considered intuitionistic 

fuzzy set value which can be expressed as 

 

 ( ,[ ( ),1 ( )]);i A i A i iA u t u f u u U= −                                       (3) 

 

Intuitionistic Fuzzy Set Operations 

 

Definition 3.  Let ( ,1 )x xx t f= − and ( ,1 )y yy t f= − be two 

intuitionistic fuzzy sets, then operations can be defined as 

follows: 

 

Definition 4. Let ( , , )x x xx T I F= and ( , , )y y yy T I F= be two 

SVNNs, then operations can be defined as follows: 

 

1. ( ,1 )C

x xx f t= −  

2. ( , )x y x y x yx y t t t t f f = + −  

3. ( , )x y x y x yx y t t f f f f = + −                                              (4) 

4. (1 (1 ) ,( ) ), 0x xx t f  = − −   

5. (( ) ,1 (1 ( ) ), 0x xx t f   = − −   

 

Definition 5. Let U be the universe of discourse, with a 

generic element of U denoted by iu . A vague set A is 

characterized by a truth-membership function At  and a false-

membership function Af , where ( )A it u  is a lower bound on 

the grade of membership of u, derived from the evidence for 

iu ; ( )A if u is a lower bound on the negation of iu , derived 

from the evidence against iu ; and ( ) ( ) 1A i A it u f u+  .  

The grade of membership of iu  in the vague set A is bound 

to a subinterval [ ( ),1 ( )]A i A it u f u−  of [0,1] . The vague value 

[ ( ),1 ( )]A i A it u f u−  indicates that the exact grade of 

membership ( )A iu of iu maybe unknown, but it is bound by 

( ) ( ) 1 ( )A i A i A it u u f u  − , where ( ) ( ) 1A i A it u f u+  . Fig. 

1 shows a vague set in the universe of discourse U. 

 

 
 

Fig. 1 A vague set in the universe of discourse U 

 

When the universe of discourse U is continuous, a vague 

set A can be written as 

 

[ ( ),1 ( )] / ,A i A i i i

U

A t u f u u u U= −                                               (5) 

 

When the universe of discourse U is discrete, a vague set A 

can be written as 

 

1

[ ( ),1 ( )] / ,
I

A i A i i i

i

A t u f u u u U
=

= −                                      (6) 

 

For example, if [ ( ),1 ( )] [0.7,0.9]A i A it u f u− = , then  

( )A it u =0,7, 1 ( )A if u− =0.9, ( )A if u =0,1. The result can be 

explained as 
iu belonging to vague set A and accept evidence 

is 0.7; decline evidence is 0,1 and hesitation is 

( ) 1 ( ) ( ) 0,2A i A i A iu f u t u = − − = .  

By including this hesitation degree in the representation of 

vague sets, vague set A can be represented as 

( ( ),1 ( ), ( ))A i A i A it u f u u− . 

The precision of the knowledge about iu is characterized 

by the difference (1 ( ) ( ))A i A if u t u− − . If this difference is 

small, the knowledge about iu  is more precise: if it is large, 

the knowledge about iu  is more uncertain. If 

(1 ( ) ( ))A i A if u t u− = , the knowledge about iu  is exact, the 

vague set theory reverts to fuzzy set theory.  

 

C. Operation between Vague Sets 

 

Let x, y  be two vague values in the universe of discourse 

U, [ ,1 ]x xx t f= − , [ ,1 ]y yy t f= − , where , , , [0,1]x x y yt f t f   

and 1, 1x x y yt f t f+  +  ; the operation and relationship 

between vague values is defined as follows: 

 

Definition 6. The minimum operation of vague values x and 

y is defined by 

 

[min( , ),min(1 ,1 )]

[min( , ),1 max( , )]

x y x y

x y x y

x y t t f f

t t f f

 = − −

= −
                                    (7) 

 

Definition 7. The maximum operation of vague values x and 

y is defined by 

 

[max( , ),max(1 ,1 )]

[max( , ),1 min( , )]

x y x y

x y x y

x y t t f f

t t f f

 = − −

= −
                              (8) 

 

Definition 8. The complement of vague value x is defined 

by 

 

[ ,1 ]x xx f t= −                                                                      (9) 

 

Let A, B  be two vague sets in the universe of discourse 

 1,..., iU u u= ,
1

[ ( ),1 ( )] /
I

A i A i i

i

A t u f u u
=

= − ,and 
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1

[ ( ),1 ( )] /
I

B i B i i

i

B t u f u u
=

= − , then the operations between 

vague sets are defined as follows. 

 

Definition 9. The intersection of vague sets A and B is defined 

by 

 

 
1

[ ( ),1 ( )] [ ( ),1 ( )] /
I

A i A i B i B i i

i

A B t u f u t u f u u
=

 = −  −  (10) 

 

Definition 10. The union of vague sets A and B is defined as 

 

 
1

[ ( ),1 ( )] [ ( ),1 ( )] /
I

A i A i B i B i i

i

A B t u f u t u f u u
=

 = −  −  (11) 

 

Definition 11. The complement of vague set A is defined as 

 

1

[ ( ),1 ( )] /
I

A i A i i

i

A f u t u u
=

= −                                             (12) 

 

D. Similarity Measure between Vague Sets 

 

The similarity measure between vague values [ ,1 ]x xx t f= −

, [ ,1 ]y yy t f= −  is calculated as 

 
2 2( ) ( )( , )

( , ) 1 1
2 2

x y x yt t f fd x y
S x y

− + −
= − = −            (13) 

 

where 
2 2( , ) ( ) (1 (1 ))x y x yd x y t t f f= − + − − −  is the 

distance between x and y. 

 

Let A, B  be two vague sets in the universe of discourse 

 1,..., iU u u= ,
1

[ ( ),1 ( )] /
I

A i A i i

i

A t u f u u
=

= − ,and 

1

[ ( ),1 ( )] /
I

B i B i i

i

B t u f u u
=

= − , the similarity measure between 

A and B is defined as  

 

1

1
( , ) ( ( ), ( ))

I

A i B i

i

S A B S u u
I

 
=

=                                        (14) 

E. Comparison between Vague Sets 

 

Definition 12. For vague value [ ,1 ]x xx t f= − , 

[ ,1 ]y yy t f= − , the probability of  x y  is defined as 

 

max(0, ( ) ( ) max(0,1 ))
( )

( ) ( )

y xl x l y f f
P x y

l x l y

+ − − −
 =

+
       (15) 

where ( ) 1 , ( ) 1x x y yl x f t l y f t= − − = − −  is the length of 

vague value x, y. The properties can easily be obtained as 

follows: 

 

Property 1. 0 ( ) 1P x y    

 

Property 2. If ( ) ( )P x y P y z =  ,  then 

( ) ( ) 0.5P x y P y x =  =  

 

Property 3. ( ) ( ) 1P x y P y x +  =  

 

Property 4. For any three vague values x, y, z, if   

 

( ) 0.5P x y  , ( ) 0.5P y z  , then ( ) 0.5P x z  . 

 

Definition 13. Let A, B  be two vague sets in the universe of 

discourse  1,..., iU u u= ,
1

[ ( ),1 ( )] /
I

A i A i i

i

A t u f u u
=

= − ,and 

1

[ ( ),1 ( )] /
I

B i B i i

i

B t u f u u
=

= − , the probability of A B  is 

defined as 

 

1

1
( ) ( ( ) ( ))

I

A i B i

i

P A B S u u
I

 
=

 =                                       (16) 

 

F. Defuzzification of Vague Sets 

 

Definition 14. For vague value [ ,1 ]x xx t f= − , the 

defuzzification function to get the precise value is defined as  

 

( ) x

x x

t
D x

t f
=

+
                                                                  (17) 

 

G. Weighted Sum of Vague Values 

 

Definition 15. For I vague values [ ,1 ]
i ii x xx t f= − , whose 

weights vector  1,..., ,1j j J  =   , where 
1

1
J

j

j


=

= , 

are J precise values, the weighted sum of ix is defined as  

 

1 1 1

,1
J J J

i j ij j ij j ij

j j j

x x t f  
= = =

 
= = − 

 
                                   (18) 

 

H. Neutrosophic Set Theory 

 

Definition 16. Let X be a space of points (objects) with a 

class of elements in X denoted by x. A neutrosophic set A in 

X is summarized by a truth-membership function ( )A xT , an 

indeterminacy-membership function ( )A xI , and a falsity-

membership function ( )A xF . The functions ( )A xT , ( )A xI , ( )A xF

are real standard or non-standard subsets of  ] 0,1 [− +
.  
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That is 
( ) : ] 0,1 [A xT X − +→ , 

( ) : ] 0,1 [A xI X − +→ ,  

and
( ) : ] 0,1 [A xF X − +→ . 

 

( ) ( ) ( )0 sup sup sup 3A x A x A xT I F− + + +                               (19) 

 

Definition 17. Let X  be a space of points (objects), with a 

class of elements in X denoted by x. A single valued 

neutrosophic set N in X is summarized by a truth-membership 

function ( )N xT , an indeterminacy-membership function ( )N xI

, and a falsity-membership function ( )N xF . Then a SVNS N 

can be denoted as follows: 

 

 ( ) ( ) ( ), , ,N x N x N xN x T I F x X=                                        (20) 

 

where ( )N xT , ( )N xI , ( )N xF [0,1]  for x X  . Meanwhile, the 

sum of ( )N xT , ( )N xI , and ( )N xF  fulfills the condition 

 

( ) ( ) ( )0 3.N x N x N xT I F + +                                                      (21) 

 

Definition 18. Let ( , , )x x xx T I F= and ( , , )y y yy T I F= be two 

SVNNs, then operations can be defined as follows: 

 

1. ( ,1 , )C

x x xx F I T= −  

2. ( * , * , * )x y x y x y x yx y T T T T I I F F = + −  

3. ( * , * , * )x y x y x y x y x yx y T T I I I I F F F F = + − + −          (22) 

4. (1 (1 ) ,( ) , ( ) ), 0x x xx T I F   = − −   

5. (( ) ,1 (1 ) ,1 (1 ( ) ), 0x x xx T I F    = − − − −   

 

Definition 19. For two SVNNS ( , , )x x xx T I F= and 

( , , )y y yy T I F=  , if x y  then , ,x y x y x yT T I I F F   .  

 

Definition 20. Let x and y be any two SVNNs, then the 

Hamming distance between x and y can be defined as follows: 

 

1
( , ) (| | | | | |)

3
Ha x y x y x yd x y T T I I F F= − + − + −                 (23) 

 

Definition 21. Let x and y be any two SVNNs, then the 

Euclidean distance between x and y can be defined as follows: 

 

2 2 21
( , ) ( ) ( ) ( ) )

3
E x y x y x yd x y T T I I F F= − + − + −              (24) 

 

Definition 22. Let x and y be any two SVNNs, then  the 

normalized generalized distance between x and y can be 

defined as follows: 

 
1

1
( , ) (| | | | | | )

3
G x y x y x yd x y T T I I F F   = − + − + −           (25) 

 

with the condition of λ > 0. When λ = 1, it is the Hamming 

distance; when λ = 2 , it is the Euclidean distance. 

 

Definition 23. Let ( , , )x x xx T I F= be a SVNN, then the 

proposed score function ( )S x is defined as follows: 

  

2
( )

3

x x xT I F
S x

+ − −
=                                                            (26) 

 

Definition 24. Let ( , , )x x xx T I F= be a SVNN, then the 

proposed accuracy function ( )H x is defined as follows: 

 

( ) x xH x T F= −                                                                        (27) 

 

Definition 25. Let x and y be any two SVNNs, If  

( ) ( ), ,S x S y x y  when ( ) ( )S x S y= , if ( ) ( )H x H y=  and 

then x y= , else if ( ) ( )H x H y and then x y . 

 

Definition 26. Let x and y be any two SVNNs, then the 

normalized single-valued neutrosophic Hausdorff distance 

between x and y is defined as follows: 

 

 ( , ) max | |,| |,| |Hd x y x y x yD x y T T I I F F= − − −                   (28) 

 

Let x, y and z be any three SVNNs, the above defined the 

weighted single valued neutrosophic Hausdorff distance 

among x, y and z satisfies the following properties (1)−(4): 

 

1. ( , ) 0HdD x y  ; 

2. ( , ) 0HdD x y =  if only if x y= ; 

3. ( , ) ( , )Hd HdD x y D y x= ;                                                   (29) 

4.  If ,x y z  then ( , ) ( , )Hd HdD x z D x y and 

    ( , ) ( , ).Hd HdD x z D y z  

 

Definition 27. The normalized generalized single-valued 

neutrosophic Hausdorff distance between x and y is defined 

as follows: 

 
1

( , ) max | | ,| | ,| |g Hd x y x y x yD x y T T I I F F   = − − −     (30) 

 

0  , when 1,2,..., =  it is the Hausdorff distance. 

  Hd gHlD D= is obtained with any two SVNNS. 

 

Definition 28. The weighted parameter single-valued 

neutrosophic distance between x and y is is defined as 

follows: 

 

( , ) ( , ) (1 ) ( , )p g HdD x y vD x y v D x y = + −  

1

(| | | | | | )
3

x y x y

v
T T I I Fx Fy   = − + − + −                     (31) 

 (1 ) max | |,| |, | |x y x y x yv T T I I F F+ − − − −  

 

where 0  , and 0 1.v   
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If we set λ = 1 , then the weighted parameter is obtained 

from the single-valued Hamming and Hausdorff distance 

which is described as follows: 

 

( , ) ( , ) (1 ) ( , )HH H HdD x y vD x y v D x y = + −  

(| | | | | |)
3

x y x y

v
T T I I Fx Fy= − + − + −                               (32)   

 (1 ) max | |,| |, | |x y x y x yv T T I I F F+ − − − −  

 

Definition 29. Let x, y and z be any three SVNNs, ( ),S x y  is 

a similarity measure 

 

( ) , ), 1 (wHHS x y D x y= −  

1 (| | | | | |)
3

x y x y

v
T T I I Fx Fy= − − + − + −                            (33) 

 (1 ) max | |,| |, | |x y x y x yv T T I I F F− − − − −  

 

It possesses the following properties: 

 

1. ( )0 1,S x y  ; 

2. ( ), 1S x y =  if and only if  x y= ; 

3. ( ) ( ), ,S x y S y x= ;                                                              (34) 

4.  If ,x y z  then ( , ) ( , )S x z S x y and 

    ( , ) ( , ).S x z S y z  

 

I. Linguistic Variables 

 

Linguistic variables are often used in various extensions of 

MCDM methods to facilitate and enable decision-makers, i.e. 

respondents, to more accurately evaluate alternatives. In 

addition to the use of linguistic variables, i.e., their 

abbreviations, respondents can express their attitudes using 

the recommended crisp numerical values. However, if the 

respondents want it or it is necessary, the respondents can 

express their attitudes more precisely using numbers from the 

interval [0,1]. 

 
Table 1. Linguistic variables for expressing confidence levels 

 

J. TOPSIS Multiple Criteria Decision Making Analysis 

Method  

 

The TOPSIS method is based on the idea that the best 

alternative should have the shortest distance from an ideal 

solution [28]. It is assumed that it would be easy to define an 

ideal solution if each attribute receives a monotonically 

increasing or decreasing variation. Such a solution consists of 

the best achievable attribute values, while the worst solution 

consists of all the worst achievable attribute values. 

Suppose that a multiple criteria decision making analysis 

problem having I alternatives,  1,..., ,1Ia a a i I=   , and J, 

criteria,  1,..., ,1Ig g g j J=   . Each alternative is 

evaluated with respect to the J criteria. All the values/ratings 

are assigned to alternatives with respect to the decision matrix 

denoted by   ij ixj
X x =   . Let   1,..., ,1j j J  =   be 

the weight vector of criteria satisfying 
1

1
J

j

j


=

= . 

The TOPSIS method consists of the following procedural 

steps: 

 

Step 1. Normalization of the decision matrix 

 

2

1

,1 ,1
ij

ij
K

kj

k

x
r i I j J

x
=

=    



                                                (35) 

 

Step 2. Calculation of the weighted normalized decision 

matrix 

 

ij j ijv r=  

 

where j  represents the weight of the jth criterion. 

 

Step 3. Determination of the ideal and negative ideal 

alternatives 

  ( ) ( ) 1 ,..., max | , min |j ij b ij c
jj

A v v v j v j+ + += =     (36) 

  ( ) ( ) 1 ,..., min | , max |j ij b ij c
j j

A v v v j v j− − −= =     (37) 

 

where b  is the set of benefit criteria, and c  is the set of 

cost criteria. 

 

Step 4. Calculation of the distance of the existing alternatives 

from ideal and negative ideal alternatives 

 

2

1

( )
J

i ij j

j

S v v+ +

=

= −                                                                   (38) 

 

2

1

( )
J

i ij j

j

S v v− −

=

= −                                                                      (39) 

 

Step 5. Calculation of the relative closeness to the ideal 

alternatives 

 

i

i

i i

S
RC

S S

−

+ −
=

+
, 1 ,0 1ii I RC                                      (40) 

Linguistic terms Label 
Crisp numerical 

value 
Permissible value range 

Extremely High  EH 0.9 [0.8,1.0] 

Very High  VH 0,8 [0.7,0.9] 

High  H 0,7 [0.6,0.8] 

Moderate High  MH 0,6 [0.5,0.7] 

Moderate  M 0,5 [0.4,0.6] 

Moderate Low  ML 0,4 [0.3,0.5] 

Low  L 0,3 [0.2,0.4] 

Very Low  VL 0,2 [0.1,0.3] 

Extremely Low  EL 0,1 [0.0,0.2] 
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Step 6. Rank the alternatives 

 

The alternatives are ranked in a descending order, the 

bigger is the iRC , the better is the alternative ia . 

III. APPLICATION  

In real life, one may think that an object belongs to a set to 

a certain degree, but it is also possible to be unsure of this. In 

other words, there may be hesitation about the degree of 

membership. In fuzzy set theory there is no way to include 

this hesitation in the membership degree. To incorporate this 

hesitancy into the TOPSIS method, this methodology was 

extended to vague sets. Suppose a vague set consists of

 1,..., ,1Ia a a i I=   are I possible alternatives among 

which the decision makers have to choose, 

 1,..., ,1Ig g g j J=    are criteria with which alternative 

performance are measured, ijx is the rating of alternative ia

with respect to criterion jg . The fighter aircraft candidates 

were evaluated under six criteria including costability 1g , 

payloadability 
2g , maneuverability 

3g , speedability 
4g , 

stealthability 
5g , and survivability 

6g . The attribute ratings 

of fighter aircraft are linguistic variables. Here these 

linguistic variables can be expressed in vague values as 

shown in Table 1. 

 

A vague-valued MCDMA problem can be concisely 

expressed in a matrix format as  

 

1 1 1 1

* *

1 1

* *

1 1

[ ( ), ( )] [ ( ), ( )]

[ ( ), ( )] [ ( ), ( )]
i i i i

A A A j A j

A A A j A j

t x t x t x t x

t x t x t x t x

 
 
 
  
 

 

 

 1,..., ,1j j J  =    

 

where 
* ( ) 1 ( )

i iA i A it x f x= − , j is the weight of criterion jg

and is also a vague set. The vague-valued decision matrix 

can also be represented with hesitation degree ( )
iA jx as  

 

1 1 1 1 1 1

* *

1 1 1

* *

1 1 1

[ ( ), ( ), ( )] [ ( ), ( ), ( )]

[ ( ), ( ), ( )] [ ( ), ( ), ( )]
i i i i i i

A A A A j A j A j

A A A A j A j A j

t x t x x t x t x x

t x t x x t x t x x

 

 

 
 
 
  
 

 

 

Vague-valued weighted decision matrix is given by 

 

 * *, ( ) ( ),1 ( ) ( ) |
j i jİA j j A j jx t x t x t x t x x X −   

1 1 1 1 1 1

* *

1 1 1

* *

1 1 1

[ ( ), ( ), ( )] [ ( ), ( ), ( )]

[ ( ), ( ), ( )] [ ( ), ( ), ( )]
i i i i i i

A A A A j A j A j

A A A A j A j A j

t x t x x t x t x x

t x t x x t x t x x

       

       

 
 
 
  
 

 

 

Vague positive ideal solution (VPIS)  is  determined by 

  
*

*

, ((max ( ) / ), ((min ( ) / )),

((min ( ) / ), ((max ( ) / )),

i Ai

i Ai

j A j b j c
ii

A j b j c
i i

x t x j t x j
a

t x j t x j

 

 

+

    
 

=  
     

 

  

 * *

1 1 1, ( ), ( ) ,..., , ( ), ( )A J j jA A A
a x t x t x x t x t x   + + +

+ =  

 

Vague negative ideal solution (VNIS)  is  determined by 

 
*

*

, ((min ( ) / ), ((max ( ) / )),

((max ( ) / ), ((min ( ) / )),

i Ai

i Ai

j A j b j c
i i

A j b j c
ii

x t x j t x j
a

t x j t x j

 

 

−

    
 

=  
     

 

  

 * *

1 1 1, ( ), ( ) ,..., , ( ), ( )J j jA A A A
a x t x t x x t x t x   − − − −

− =  

 

Vague distance measures (VPIS 
iS + , VNIS 

iS − ) are  

respectively calculated by 

 

2

1 1

1

1
{ [( ( ) ( ))

2

J

i A A
j

S t x t x
J

 +

+

=

= − +  

 

         * * 2

1 1( ( ) ( ))
iA A

t x t x +− +  

 

         2 1/2

1 1( ( ) ( )) ]}
iA A

x x   +−  

 

2

1 1

1

1
{ [( ( ) ( ))

2 i

J

i A A
j

S t x t x
J

 −

−

=

= − +  

 

         * * 2

1 1( ( ) ( ))
iA A

t x t x −− +  

 

         2 1/2

1 1( ( ) ( )) ]}
iA A

x x   −−  

 

The relative closeness to the ideal alternatives is calculated 

by 

 

i

i

i i

S
RC

S S

−

+ −
=

+
, 1 ,0 1ii I RC                                       

 

Conclusively, TOPSIS model integrated with the vague set 

theory was applied to the fighter aircraft selection problem by 

following the procedure through equations (35) - (40). The 

results of the procedural computations are shown in Tables 2-

6.  After analyzing the results, the fighter aircraft 
4a  was 

selected as the best candidate for the Air Force. 

 

IV. CONCLUSION 

For the selection of fighter aircraft, a TOPSIS method 

based on vague set theory is proposed to solve multiple 

criteria decision-making problems characterized by uncertain 

human judgments. To demonstrate the effectiveness of the 

proposed TOPSIS method, a case study was considered to 
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evaluate and compare the quality of five fighter aircraft. This 

study helps defense decision makers in the selection of fighter 

aircraft to know the requirements of fighter aircraft and the 

priority of increasing their defense capabilities. 

Given that in some cases it is difficult to determine the 

exact values of the attributes, and their values are considered 

as vague data. However, fuzzy sets cannot resolve the 

uncertainty in the data in the form of hesitation. 

As vague sets are efficient to deal with this hesitation 

available in the information provided by the decision maker, 

TOPSIS is expanded for vague sets to determine the most 

preferred choice among all possible options when the data is 

vague. Here, the ratings of the alternatives are taken as vague 

sets. In this approach, a normalized Euclidean distance 

measure is also taken into account to calculate the distance of 

an alternative from the vague positive ideal solution and its 

distance from the negative ideal solution. The smaller the 

distance of the evaluated alternative from the positive ideal 

solution and the further away from the vague negative ideal 

solution, the better the ranking. 

 

 

 

 

 

Table 2.  Vague valued decision matrix 

 

jg  
1g min 

2g max 
3g max 

4g max 
5g max 

6g max 

j  0,12 0,13 0,14 0,16 0,23 0,22 

1a  0,8 1 0,7 0,9 0,4 0,6 0,6 0,8 0,4 0,6 0,3 0,5 

2a  0,3 0,5 0,3 0,5 0,5 0,7 0,4 0,6 0,3 0,5 0,6 0,8 

3a  0,4 0,6 0,4 0,6 0,6 0,8 0,2 0,4 0,5 0,7 0,4 0,6 

4a  0,6 0,8 0,7 0,9 0,8 1 0,3 0,5 0,8 1 0,7 0,9 

5a  0,2 0,4 0,6 0,8 0,4 0,6 0,7 0,9 0,1 0,3 0,5 0,7 

 

 
Table 3. The weights of the criteria 

 

jg  
 

1g  
2g  3g  

4g  5g  
6g  

j  0,12 0,13 0,14 0,16 0,23 0,22 

 

 

Table 4.  Vague valued weighted decision matrix 

 

jg  
1g min 

2g max 
3g max 

4g max 
5g max 

6g max 

j  0,12 0,13 0,14 0,16 0,23 0,22 

1a  0,096 0,12 0,024 0,091 0,117 0,026 0,056 0,084 0,028 0,096 0,128 0,032 0,092 0,138 0,046 0,066 0,11 0,044 

2a  0,036 0,06 0,024 0,039 0,065 0,026 0,07 0,098 0,028 0,064 0,096 0,032 0,069 0,115 0,046 0,132 0,176 0,044 

3a  0,048 0,072 0,024 0,052 0,078 0,026 0,084 0,112 0,028 0,032 0,064 0,032 0,115 0,161 0,046 0,088 0,132 0,044 

4a  0,072 0,096 0,024 0,091 0,117 0,026 0,112 0,14 0,028 0,048 0,08 0,032 0,184 0,23 0,046 0,154 0,198 0,044 

5a  0,024 0,048 0,024 0,078 0,104 0,026 0,056 0,084 0,028 0,112 0,144 0,032 0,023 0,069 0,046 0,11 0,154 0,044 

Table 5. Vague Positive-Ideal Solution (VPIS) and the Vague Negative-Ideal Solution (VNIS) 

 

a+
 0,024 0,048 0,024 0,091 0,117 0,026 0,112 0,14 0,028 0,112 0,144 0,032 0,184 0,23 0,046 0,154 0,198 0,044 

a−
 0,096 0,12 0,024 0,039 0,065 0,026 0,056 0,084 0,028 0,032 0,064 0,032 0,023 0,069 0,046 0,066 0,11 0,044 
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Table 6. Vague distance measures (VPIS 
iS + , VNIS 

iS −
), relative closeness coefficient (

iRC ) and normalized  rankings ( 
iJ ) of the 

stealth fighter aircraft alternatives 

  

ia  
 

iS +
 iR  

iS −
 iR  

iRC  
iR  iJ  

1a  0,064 2 0,044 4 0,406 5 0,169 

2a  0,059 3 0,043 5 0,425 3 0,177 

3a  0,055 4 0,045 3 0,449 2 0,187 

4a  0,033 5 0,082 1 0,715 1 0,297 

5a  0,072 1 0,050 2 0,410 4 0,170 

REFERENCES 

[1] Ardil, C., Bilgen, S. (2017). Online Performance Tracking. 

SocioEconomic Challenges, 1(3), 58-72. ISSN (print) – 2520-6621. 

[2] Ardil, C. (2018) Multidimensional Performance Tracking. 
International Journal of Computer and Systems Engineering, Vol:12, 

No:5,320-349 

[3] Ardil, C. (2021). Architectural Acoustic Modeling for Predicting 
Reverberation Time in Room Acoustic Design Using Multiple Criteria 

Decision Making Analysis. International Journal of Architectural and 

Environmental Engineering, 15(9), 418 - 423. 

[4] Ardil, C. (2019). Aircraft Selection Using Multiple Criteria Decision 
Making Analysis Method with Different Data Normalization 

Techniques. International Journal of Industrial and Systems 

Engineering, 13(12), 744 - 756. 
[5] Ardil, C. , Pashaev, A. , Sadiqov, R. , Abdullayev, P. (2019). Multiple 

Criteria Decision Making Analysis for Selecting and Evaluating 

Fighter Aircraft. International Journal of Transport and Vehicle 
Engineering, 13(11), 683 - 694. 

[6] Ardil, C. (2019). Military Fighter Aircraft Selection Using 

Multiplicative Multiple Criteria Decision Making Analysis Method. 
International Journal of Mathematical and Computational Sciences, 

13(9), 184 - 193. 

[7] Saaty, T. L. (1990). How to make a decision: The Analytic Hierarchy 
Process. European Journal of Operational Research, 48(1), 9-26. doi: 

10.1016/0377-2217(90)90057-I 

[8] Saaty, T. L. (2008). Decision making with the analytic hierarchy 
process. International Journal of Services Sciences, 1(1), 83-98. doi: 

10.1504/IJSSCI.2008.017590 

[9] Saaty, T.L. (1980). Analytic Hierarchy Process: Planning, Priority 
Setting, Resource Allocation. McGraw-Hill, New York. 

[10] Ardil, C. (2021). Advanced Jet Trainer and Light Attack Aircraft 

Selection Using Composite Programming in Multiple Criteria Decision 

Making Analysis Method. International Journal of Aerospace and 
Mechanical Engineering, 15(12), 486 - 491.  

[11] Ardil, C. (2021). Comparison of Composite Programming and 

Compromise Programming for Aircraft Selection Problem Using 
Multiple Criteria Decision Making Analysis Method. International 

Journal of Aerospace and Mechanical Engineering, 15(11), 479 - 485. 

[12] Ardil, C. (2018) Multidimensional Compromise Optimization for 
Development Ranking of the Gulf Cooperation Council Countries and 

Turkey. International Journal of Mathematical and Computational 

Sciences Vol:12, No:6, 131-138. 
[13] Ardil, C. (2018) Multidimensional Compromise Programming 

Evaluation of Digital Commerce Websites. International Journal of 

Computer and Information Engineering Vol:12, No:7, 556-563. 
[14] Ardil, C. (2018) Multicriteria Decision Analysis for Development 

Ranking of Balkan Countries. International Journal of Computer and 

Information Engineering Vol:12, No:12, 1118-1125. 

[15] Ardil, C. (2021). Freighter Aircraft Selection Using Entropic 
Programming for Multiple Criteria Decision Making Analysis. 

International Journal of Mathematical and Computational Sciences, 

15(12), 125 - 132. 
[16] Ardil, C. (2020). A Comparative Analysis of Multiple Criteria Decision 

Making Analysis Methods for Strategic, Tactical, and Operational 

Decisions in Military Fighter Aircraft Selection. International Journal 
of Aerospace and Mechanical Engineering, 14(7), 275 - 288. 

[17] Ardil, C. (2020). Aircraft Selection Process Using Preference Analysis 
for Reference Ideal Solution (PARIS). International Journal of 

Aerospace and Mechanical Engineering, 14(3), 80 - 93. 

[18] Ardil, C. (2020). Regional Aircraft Selection Using Preference 
Analysis for Reference Ideal Solution (PARIS).  International Journal 

of Transport and Vehicle Engineering, 14(9), 378 - 388. 

[19] Ardil, C. (2020). Trainer Aircraft Selection Using Preference Analysis 
for Reference Ideal Solution (PARIS). International Journal of 

Aerospace and Mechanical Engineering, 14(5), 195 - 209. 

[20] Ardil, C. (2020). Software Product Quality Evaluation Model with 
Multiple Criteria Decision Making Analysis. International Journal of 

Computer and Information Engineering, 14(12), 486 - 502. 

[21] Roy, B. (1991). The outranking approach and the foundation of 
ELECTRE methods. Theory and Decision, 31(1), 49–73. 

[22] Fei, L., Xia, J., Feng, Y., Liu, L. (2019) An ELECTRE-Based Multiple 
Criteria Decision Making Method for Supplier Selection Using 

Dempster-Shafer Theory. IEEE Access, 7, 84701-84716. 

[23] Brans JP., Mareschal B. (2005). Promethee Methods. In: Multiple 
Criteria Decision Analysis: State of the Art Surveys. International 

Series in Operations Research & Management Science, vol 78, pp 163-

186. Springer, New York, NY. https://doi.org/10.1007/0-387-23081-
5_5. 

[24] Brans, J., Ph. Vincke. (1985). A Preference Ranking Organisation 

Method: (The PROMETHEE Method for Multiple Criteria Decision-
Making). Management Science, 31(6), 647-656. 

[25] Brans, J.P., Macharis, C., Kunsch, P.L., Chevalier, A., Schwaninger, 

M., (1998). Combining multicriteria decision aid and system dynamics 
for the control of socio-economic processes. An iterative real-time 

procedure. European Journal of Operational Research 109, 428-441.  

[26] Brans, J.P., Vincke, Ph., Mareschal, B., (1986). How to select and how 
to rank projects: the PROMETHEE method. European Journal of 

Operational Research, 24, 228-238. 

[27] Ardil, C. (2020) Facility Location Selection using Preference 
Programming. International Journal of Industrial and Systems 

Engineering, 14(1), 1 - 12. 

[28] Hwang, C.L.; Yoon, K. (1981). Multiple Attribute Decision Making: 
Methods and Applications. New York: Springer-Verlag. 

[29] Chu, T.C. (2002. Facility location selection using fuzzy TOPSIS under 

group decisions”, International Journal of Uncertainty, Fuzziness and 
Knowledge-Based Systems, Vol. 10 No. 6, pp. 687-701. 

[30] Choudhary, D. and Shankar, R. (2012. A STEEP-fuzzy AHP-TOPSIS 

framework for evaluation and selection of thermal power plant 

location: a case study from India”, Energy, Vol. 42 No. 1, pp. 510-521. 

[31] Zavadskas, E.K., Mardani, A., Turskis, Z., Jusoh, A., Nor, K.M. (2016) 

Development of TOPSIS method to solve complicated decision-
making problems: An overview on developments from 2000 to 2015. 

International Journal of Information Technology & Decision Making, 

15, 645-682. 
[32] Ardil, C. (2019) Scholar Index for Research Performance Evaluation 

Using Multiple Criteria Decision Making Analysis. International 

Journal of Educational and Pedagogical Sciences, Vol:13, No:2, 93-
105. 

[33] Ardil, C. (2019). Fighter Aircraft Selection Using Technique for Order 

Preference by Similarity to Ideal Solution with Multiple Criteria 

Decision Making Analysis. International Journal of Transport and 
Vehicle Engineering, 13(10), 649 - 657. 

[34] Ardil, C. (2022). Military Attack Helicopter Selection Using Distance 

Function Measures in Multiple Criteria Decision Making Analysis. 

World Academy of Science, Engineering and Technology
International Journal of Aerospace and Mechanical Engineering

 Vol:16, No:5, 2022 

136International Scholarly and Scientific Research & Innovation 16(5) 2022 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 A
er

os
pa

ce
 a

nd
 M

ec
ha

ni
ca

l E
ng

in
ee

ri
ng

 V
ol

:1
6,

 N
o:

5,
 2

02
2 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

00
12

55
5.

pd
f



International Journal of Aerospace and Mechanical Engineering, 16(2), 

20 - 27. 

[35] Opricovic, S. (1998). Multicriteria Optimization of Civil Engineering 
Systems. PhD Thesis, Faculty of Civil Engineering, Belgrade (in 

Serbian). 

[36] Opricovic, S. (2007). A fuzzy compromise solution for multicriteria 
problems. International Journal of Uncertainty, Fuzziness and 

Knowledge-Based Systems, 15(3), 363–380. 

[37] Opricovic, S., Tzeng, G.-H. (2004). Compromise solution by MCDM 
methods: A comparative analysis of VIKOR and TOPSIS. European 

Journal of Operational Research, 156(2), 445–455. 

[38] Modarres, M., Sadi-Nezhad, S. (2005). Fuzzy simple additive 
weighting method by preference ratio, Intelligent Automation and Soft 

Computing, 235-244. 

[39] Kaur, P., Kumar, S. (2013). An Intuitionistic Fuzzy Simple Additive 
Weighting Method for selection of vendor. ISOR Journal Business 

and Management, 78-81. 

[40] Sagar, M.K., Jayaswal, P., Kushwah, K. (2013). Exploring Fuzzy 

SAW Method for Maintenance strategy selection problem of 
Material Handling Equipment, (2013), ISSN 22 77 – 4106. 

[41] Wang,Y.J. (2015). A fuzzy multi-criteria decision making model based 

on additive weighting method and preference relation, Applied Soft 
Computing, 30,412-420. 

[42] Roszkowska, E., Kacprzak, D. (2016). The fuzzy saw and fuzzy 

TOPSIS procedures based on ordered fuzzy numbers. Inf. Sci., 369, 
564-584. 

[43] Zhang, L., Xu, X., Tao, L. (2013) Some Similarity Measures for 

Triangular Fuzzy Number and Their Applications in Multiple Criteria 
Group Decision-Making, Journal of Applied Mathematics, vol. 2013, 

Article ID 538261, 1-7 pages, 2013. 

[44] Ardil, C. (2021). Fighter Aircraft Evaluation and Selection Process 
Based on Triangular Fuzzy Numbers in Multiple Criteria Decision 

Making Analysis Using the Technique for Order of Preference by 

Similarity to Ideal Solution (TOPSIS). International Journal of 
Computer and Systems Engineering, 15(12), 402 - 408. 

[45] Ardil, C. (2021). Military Combat Aircraft Selection Using Trapezoidal 

Fuzzy Numbers with the Technique for Order of Preference by 
Similarity to Ideal Solution (TOPSIS). International Journal of 

Computer and Information Engineering, 15(12), 630 - 635. 

[46] Ardil, C. (2021). Neutrosophic Multiple Criteria Decision Making 

Analysis Method for Selecting Stealth Fighter Aircraft. International 

Journal of Aerospace and Mechanical Engineering, 15(10), 459 - 463. 

[47] Ardil, C. (2022). Aircraft Selection Problem Using Decision 
Uncertainty Distance in Fuzzy Multiple Criteria Decision Making 

Analysis. International Journal of Mechanical and Industrial 

Engineering, 16(3), 62 - 69. 
[48] Ardil, C. (2022). Fighter Aircraft Selection Using Neutrosophic 

Multiple Criteria Decision Making Analysis. International Journal of 

Computer and Systems Engineering, 16(1), 5 - 9. 
[49] Ardil, C. (2021). Airline Quality Rating Using PARIS and TOPSIS in 

Multiple Criteria Decision Making Analysis. International Journal of 

Industrial and Systems Engineering, 15(12), 516 - 523. 
[50] Ardil, C. (2022).Fuzzy Uncertainty Theory for Stealth Fighter Aircraft 

Selection in Entropic Fuzzy TOPSIS Decision Analysis Process. 

International Journal of Aerospace and Mechanical Engineering, 16(4), 
93 - 102. 

[51] Chen, S.J., Hwang, C.L. (1992). Fuzzy Multiple Factor Decision 

Making Methods and Applications, Lecture Notes in Economics and 
Mathematical Systems, Springer-Verlag, Berlin. 

[52] Dyer,J.S.,  Fishburn,P.C.,  Steuer,R.E.,   Wallenius,J.,  Zionts,S. (1992). 

Multiple criteria decision making, Multiattribute utility theory: The 
next ten years, Management Sci. 38 (5), 645–654. 

[53] Delgado,M., Verdegay,J.L., Vila,M.A. (1992). Linguistic decision 
making models, Int. J. Intelligent System 7, 479–492. 

[54] Herrera, F., Herrera-Viedma,E., Verdegay, J.L.(1996). A model of 

consensus in group decision making under linguistic assessments, 
Fuzzy Sets and Systems 78,73–87. 

[55] Hsu, H.M., Chen, C.T. (1997). Fuzzy credibility relation method for 

multiple criteria decision-making problems, Inform. Sci. 96,79–91. 
[56] Chen, C.-T. (2000). Extensions of the TOPSIS for group decision-

making under fuzzy environment. Fuzzy Sets Syst. 114, 1–9. 

[57] Chen, S. H., Wang, S. T., Chang, S. M. (2006). Some properties of 
Graded Mean Integration representation of L-R type fuzzy numbers. 

Tamsui Oxford Journal of Mathematical Sciences, 22(2), 185-208. 

[58] Zadeh L.A., (1965). Fuzzy Sets. Information and Control, 8, 338-353. 

[59] Bellman, R.E., Zadeh, L.A. (1970). Decision-making in a fuzzy 

environment. Management Science, 17(4), 141–164. 

[60] Zadeh, L.A. (1975). The concept of a linguistic variable and its 
application to approximate reasoning, Inform. Sci. 8, 199–249(I), 301–

357(II). 

[61] Atanassov K. (1986). Intuitionistic Fuzzy Sets, Fuzzy Sets and 
Systems, Vol. 20(1), 87-96. 

[62] Atanassov K., Gargov G. (1989).Interval-valued intuitionistic fuzzy 

sets. Fuzzy Sets Syst. 31:343–349. 
[63] Gau W.L., Buehrer D.J. (1993). Vague sets. IEEE Trans. Syst. Man 

Cybern. 23:610–613. 

[64] Chen S.M. (1995). Measures of similarity between vague sets. Fuzzy 
Sets yst. 74:217–223. 

[65] Bustince, H., Burillo, P.(1996). Vague sets are intuitionistic fuzzy 

sets.Fuzzy Sets and Systems 79, 403-405. 
[66] Xu W., Ma J., Wang S., Hao G. (2010). Vague soft sets and their 

properties. Comput. Math. Appl.59:787–794. 

[67] Wang C., Qu A. (2013). Entropy, similarity measure and distance 
measure of vague soft sets and their relations. Inf. Sci.244:92–106. 

[68] Selvachandran, G., Garg, H., Quek, S. G. (2018). Vague Entropy 

Measure for Complex Vague Soft Sets. Entropy, 20(6), 403. 

[69] Zhang,Q., Zhao, F.,Yang, J. (2019). The Uncertainty Analysis of 

Vague Sets 

[70] Xu,G., Wang, Y., Leng, J. (2022). Improved PBFT Algorithm Based 
on Vague Sets. Sec. and Commun. Netw. 2022. 

[71] Smarandache, F. (2019). Neutrosophic Set is a Generalization of 

Intuitionistic Fuzzy Set, Inconsistent Intuitionistic Fuzzy Set (Picture 
Fuzzy Set, Ternary Fuzzy Set), Pythagorean Fuzzy Set, Spherical 

Fuzzy Set, and q-Rung Orthopair Fuzzy Set, while Neutrosophication 

is a Generalization of Regret Theory, Grey System Theory, and Three-
Ways Decision (revisited) . Journal of New Theory, (29), 1-31. 

[72] Smarandache, F. (2018). Plithogenic Set, an Extension of Crisp, Fuzzy, 

Intuitionistic Fuzzy, and Neutrosophic Sets - Revisited. Neutrosophic 
Sets and Systems: 21 / 2018 pp. 153-166. 

[73] Smarandache, F. (2021). Plithogenic Probability & Statistics are 

generalizations of MultiVariate Probability & Statistics.Neutrosophic 
Sets and Systems, Vol. 45. 

 

 
 

 

 
 

 

 

 

World Academy of Science, Engineering and Technology
International Journal of Aerospace and Mechanical Engineering

 Vol:16, No:5, 2022 

137International Scholarly and Scientific Research & Innovation 16(5) 2022 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 A
er

os
pa

ce
 a

nd
 M

ec
ha

ni
ca

l E
ng

in
ee

ri
ng

 V
ol

:1
6,

 N
o:

5,
 2

02
2 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

00
12

55
5.

pd
f


