Search results for: Tensile test.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3035

Search results for: Tensile test.

2345 The Optimization of Engine Mounting Parts Using Hot-Cold Forging Technology

Authors: D. H. Park, Y. H. Tak, H. H. Kwon, G. J. Kwon, H. G. Kim

Abstract:

The purpose of this study is to develop a forging process of automotive parts that satisfies the deformation characteristics. The analyses of temperature variation and deformation behavior of the material are important to obtain the optimal forging products. The hot compression test was carried out to know formability at high temperature. In order to define the optimum forging conditions including material temperature, strain and forging load, the commercial finite element analysis code was used to simulate the forging procedure of engine mounting parts. Experimental results were compared with the simulation results by finite element analysis. Test results were in good agreement with the simulations.

Keywords: Cold forging, hot forging, engine mounting, automotive parts, optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1642
2344 Numerical and Experimental Investigation of Mixed-Mode Fracture of Cement Paste and Interface under Three-Point Bending Test

Authors: S. Al Dandachli, F. Perales, Y. Monerie, F. Jamin, M. S. El Youssoufi, C. Pelissou

Abstract:

The goal of this research is to study the fracture process and mechanical behavior of concrete under I–II mixed-mode stress, which is essential for ensuring the safety of concrete structures. For this purpose, two-dimensional simulations of three-point bending tests under variable load and geometry on notched cement paste samples of composite samples (cement paste/siliceous aggregate) are modeled by employing Cohesive Zone Models (CZMs). As a result of experimental validation of these tests, the CZM model demonstrates its capacity to predict fracture propagation at the local scale.

Keywords: Concrete, cohesive zone model, microstructure, fracture, three-point flexural test bending.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 343
2343 A Study of Recycle Materials to Develop for Auto Part

Authors: Sittichai Kaewkuekool, Vanchai Laemlaksakul

Abstract:

At the present, auto part industries have become higher challenge in strategy market. As this consequence, manufacturers need to have better response to customers in terms of quality, cost, and delivery time. Moreover, they need to have a good management in factory to comply with international standard maximum capacity and lower cost. This would lead companies to have to order standard part from aboard and become the major cost of inventory. The development of auto part research by recycling materials experiment is to compare the auto parts from recycle materials to international auto parts (CKD). Factors studied in this research were the recycle material ratios of PU-foam, felt, and fabric. Results of recycling materials were considered in terms of qualities and properties on the parameters such as weight, sound absorption, water absorption, tensile strength, elongation, and heat resistance with the CKD. The results were showed that recycling materials would be used to replace for the CKD.

Keywords: International auto parts, recycling materials.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2074
2342 Effect of Geum Kokanicum Total Extract on Induced Nociception and Inflammation in Male Mice

Authors: M. Ramezani, S. Ghaderifard, HR. Monsef-Esfahani, S. Nasri

Abstract:

The aim of this study is evaluating the antinociceptive and anti-inflamatory activity of Geum kokanicum. After determination total extract LD50, different doses of extract were chosen for intrapritoneal injections. In inflammation test, male NMRI mice were divided into 6 groups: control (normal saline), positive control (Dexamethasone 15mg/kg), and total extract (0.025, 0.05, 0.1, and 0.2 gr/kg). The inflammation was produced by xyleneinduced edema. In order to evaluate the antinociceptive effect of total extract, formalin test was used. Mice were divided into 6 groups: control, positive control (morphine 10mg/kg), and 4 groups which received total extract. Then they received Formalin. The animals were observed for the reaction to pain. Data were analyzed using One-way ANOVA followed by Tukey-Kramer multiple comparison test. LD50 was 1 gr/kg. Data indicated that 0.5,0.1 and 0.2 gr/kg doses of total extract have particular antinociceptive and antiinflammatory effects in a comparison with control (P<0.001). The most effective dose was 0.2 gr/kg which did not show any significant difference in a comparison with positive control. Results indicated that total extract can inhibit nociception in the first and second phase. The antinociceptive effects in high doses are the same as morphine as a strong analgesic substance. TLC chromatography indicated presence of steroids and triterpenoids in this plant. The effects of extract may be related to presence of these compounds.

Keywords: Anti-inflammatory, Antinociceptive, Geum kokanicum, Mice.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1751
2341 Effects of Aerobic Dance on Cardiovascular Level and Body Weight among Women

Authors: Mohd Faridz Ahmad, Muhammad Amir Asyraf Rosli

Abstract:

Aerobic dance has becoming a popular mode of exercise especially among women due to its fun nature. With a catchy music background and joyful dance steps, aerobic dancers would be able to have fun while sweating out. Depending on its level of aggressiveness, aerobic may also improve and maintain cardiorespiratory fitness other than being a great tool for weight loss. This study intends to prove that aerobic dance activity can bring the same, if not better impacts on health than other types of cardiovascular exercise such as jogging and cycling. The objective of this study was to evaluate and identify the effect of six weeks aerobic dance on cardiovascular fitness and weight loss among women. This study, which was held in Seremban Fit Challenge, used a quasiexperimental design. The subjects selected include a total of 14 women (n = 14) with age (32.4 years old ± 9.1), weight (65.93 kg ± 11.24) and height (165.36 ± 3.46) who joined the Seremban Fit Challenge Season 13. The subjects were asked to join an aerobic dance class with a duration of one hour for six weeks in a row. As for the outcome, cardiovascular fitness was measured with a 1-mile run test while any changes on weight were measured using the weighing scale. The result showed that there was a significant difference between pre and post-test for cardiovascular fitness when p = 0.02 < 0.05 and weight loss when p = 0.00 < 0.05. In conclusion, a six-week long aerobic dance program would have a positive effect on cardiovascular fitness and weight. Therefore, aerobic dance may be used as an alternative for people who wish to lead a healthy lifestyle in a fun way.

Keywords: Aerobic dance, cardiovascular fitness, weight loss, 1-mile run test.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3775
2340 Enhanced Dimensional Stability of Rigid PVC Foams Using Glass Fibers

Authors: Nidal H. Abu-Zahra, Murtatha M. Jamel, Parisa Khoshnoud, Subhashini Gunashekar

Abstract:

Two types of glass fibers having different lengths (1/16" and 1/32") were added into rigid PVC foams to enhance the dimensional stability of extruded rigid Polyvinyl Chloride (PVC) foam at different concentrations (0-20 phr) using a single screw profile extruder. PVC foam-glass fiber composites (PVC-GF) were characterized for their dimensional stability, structural, thermal, and mechanical properties. Experimental results show that the dimensional stability, heat resistance, and storage modulus were enhanced without compromising the tensile and flexural strengths of the composites. Overall, foam composites which were prepared with longer glass fibers exhibit better mechanical and thermal properties than those prepared with shorter glass fibers due to higher interlocking between the fibers and the foam cells, which result in better load distribution in the matrix.

Keywords: Polyvinyl Chloride, PVC Foam, PVC Composites, Glass Fiber Composites.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3312
2339 Reinforced Concrete, Problems and Solutions: A Literature Review

Authors: Omar Alhamad, Waleed Eid

Abstract:

Reinforced concrete is a concrete lined with steel so that the materials work together in the resistance forces. Reinforcement rods or mesh are used for tensile, shear, and sometimes intense pressure in a concrete structure. Reinforced concrete is subject to many natural problems or industrial errors. The result of these problems is that it reduces the efficiency of the reinforced concrete or its usefulness. Some of these problems are cracks, earthquakes, high temperatures or fires, as well as corrosion of reinforced iron inside reinforced concrete. There are also factors of ancient buildings or monuments that require some techniques to preserve them. This research presents some general information about reinforced concrete, the pros and cons of reinforced concrete, and then presents a series of literary studies of some of the late published researches on the subject of reinforced concrete and how to preserve it, propose solutions or treatments for the treatment of reinforced concrete problems, raise efficiency and quality for a longer period. These studies have provided advanced and modern methods and techniques in the field of reinforced concrete.

Keywords: Reinforced concrete, treatment, concrete, corrosion, seismic, cracks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2453
2338 Innovative Teaching in Systems Analysis and Design - an Action Research Project

Authors: Imelda Smit

Abstract:

Systems Analysis and Design is a key subject in Information Technology courses, but students do not find it easy to cope with, since it is not “precise" like programming and not exact like Mathematics. It is a subject working with many concepts, modeling ideas into visual representations and then translating the pictures into a real life system. To complicate matters users who are not necessarily familiar with computers need to give their inputs to ensure that they get the system the need. Systems Analysis and Design also covers two fields, namely Analysis, focusing on the analysis of the existing system and Design, focusing on the design of the new system. To be able to test the analysis and design of a system, it is necessary to develop a system or at least a prototype of the system to test the validity of the analysis and design. The skills necessary in each aspect differs vastly. Project Management Skills, Database Knowledge and Object Oriented Principles are all necessary. In the context of a developing country where students enter tertiary education underprepared and the digital divide is alive and well, students need to be motivated to learn the necessary skills, get an opportunity to test it in a “live" but protected environment – within the framework of a university. The purpose of this article is to improve the learning experience in Systems Analysis and Design through reviewing the underlying teaching principles used, the teaching tools implemented, the observations made and the reflections that will influence future developments in Systems Analysis and Design. Action research principles allows the focus to be on a few problematic aspects during a particular semester.

Keywords: Action Research, Project Development, Systems Analysis and Design, Technology in Teaching.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1452
2337 Ground Response Analyses in Budapest Based on Site Investigations and Laboratory Measurements

Authors: Zsolt Szilvágyi, Jakub Panuska, Orsolya Kegyes-Brassai, Ákos Wolf, Péter Tildy, Richard P. Ray

Abstract:

Near-surface loose sediments and local ground conditions in general have a major influence on seismic response of structures. It is a difficult task to model ground behavior in seismic soil-structure-foundation interaction problems, fully account for them in seismic design of structures, or even properly consider them in seismic hazard assessment. In this study, we focused on applying seismic soil investigation methods, used for determining soil stiffness and damping properties, to response analysis used in seismic design. A site in Budapest, Hungary was investigated using Multichannel Analysis of Surface Waves, Seismic Cone Penetration Tests, Bender Elements, Resonant Column and Torsional Shear tests. Our aim was to compare the results of the different test methods and use the resulting soil properties for 1D ground response analysis. Often in practice, there are little-to no data available on dynamic soil properties and estimated parameters are used for design. Therefore, a comparison is made between results based on estimated parameters and those based on detailed investigations. Ground response results are also compared to Eurocode 8 design spectra.

Keywords: Bender element, ground response analysis, MASW, resonant column test, SCPT, torsional shear test.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1124
2336 A New blaVIM Gene in a Pseudomonas putida Isolated from ENT Units in Sulaimani Hospitals

Authors: Dalanya Asaad Mohammed, Dara Abdul Razaq

Abstract:

A total of twenty tensile biopsies were collected from children undergoing tonsillectomy from teaching hospital ENT department and Kurdistan private hospital in sulaimani city. All biopsies were homogenized and cultured; the obtained bacterial isolates were purified and identified by biochemical tests and VITEK 2 compact system. Among the twenty studied samples, only one Pseudomonas putida with probability of 99% was isolated. Antimicrobial susceptibility was carried out by disk diffusion method, Pseudomonas putida showed resistance to all antibiotics used except vancomycin. The isolate further subjected to PCR and DNA sequence analysis of blaVIM gene using different set of primers for different regions of VIM gene. The results were found to be PCR positive for the blaVIM gene. To determine the sequence of blaVIM gene, DNA sequencing performed. Sequence alignment of blaVIM gene with previously recorded blaVIM gene in NCBI- database showed that P. putida isolate have different blaVIM gene.

Keywords: Clinical isolates, Putida, Sulaimani, Vim gene.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1655
2335 Experimental Study on the Variation of Young's Modulus of Hollow Clay Brick Obtained from Static and Dynamic Tests

Authors: M. Aboudalle, Le Btth, M. Sari, F. Meftah

Abstract:

In parallel with the appearance of new materials, brick masonry had and still has an essential part of the construction market today, with new technical challenges in designing bricks to meet additional requirements. Being used in structural applications, predicting the performance of clay brick masonry allows a significant cost reduction, in terms of practical experimentation. The behavior of masonry walls depends on the behavior of their elementary components, such as bricks, joints, and coatings. Therefore, it is necessary to consider it at different scales (from the scale of the intrinsic material to the real scale of the wall) and then to develop appropriate models, using numerical simulations. The work presented in this paper focuses on the mechanical characterization of the terracotta material at ambient temperature. As a result, the static Young’s modulus obtained from the flexural test shows different values in comparison with the compression test, as well as with the dynamic Young’s modulus obtained from the Impulse excitation of vibration test. Moreover, the Young's modulus varies according to the direction in which samples are extracted, where the values in the extrusion direction diverge from the ones in the orthogonal directions. Based on these results, hollow bricks can be considered as transversely isotropic bimodulus material.

Keywords: Bimodulus material, hollow clay brick, impulse excitation of vibration, transversely isotropic material, Young’s modulus.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 456
2334 Erythema Multiforme Exudativum Major Caused by Isoniazid Hypersensitivity in a Child

Authors: Azwin Lubis, Rika Hapsari, Zahrah Hikmah, Anang Endaryanto, Ariyanto Harsono

Abstract:

Erythema Multiforme Exudativum Major (EMEM) is one of the drug allergy diseases. Drug allergies caused by isoniazid rarely causes EMEM. Cutaneous reactions caused by isoniazid were obtained in 0.98% of patients, but the precise occurrence of Steven Johnson’s Syndrome (SJS) and Toxic Epidermolisis Necrolisis (TEN) due to isoniazid is not known for certain. We present this case to show hypersensitivity of isoniazid in a child. Based on the history of drug intake, physical diagnostic tests, drug elimination and provocation; we established the diagnosis of isoniazid hypersensitivity. The child showed improvement on skin manifestation after stopped isoniazid therapy.

Keywords: Erythema Multiforme Exudativum Major, hypersensitivity, elimination test, provocation test.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1076
2333 Forming of Nanodimentional Structure Parts in Carbon Steels

Authors: A. Korchunov, M. Chukin, N. Koptseva, M. Polyakova, A. Gulin

Abstract:

A way of achieving nanodimentional structural elements in high carbon steel by special kind of heat treatment and cold plastic deformation is being explored. This leads to increasing interlamellar spacing of ferrite-carbide mixture. Decreasing the interlamellar spacing with cooling temperature increasing is determined. Experiments confirm such interlamellar spacing with which high carbon steel demonstrates the highest treatment and hardening capability. Total deformation degree effect on interlamellar spacing value in a ferrite-carbide mixture is obtained. Mechanical experiments results show that high carbon steel after heat treatment and repetitive cold plastic deformation possesses high tensile strength and yield strength keeping good percentage elongation.

Keywords: High-carbon steel, nanodimensional structural element, interlamellar spacing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1340
2332 A Pull-out Fiber/Matrix Interface Characterization of Vegetal Fibers Reinforced Thermoplastic Polymer Composites: The Influence of the Processing Temperature

Authors: Duy Cuong Nguyen, Ali Makke, Guillaume Montay

Abstract:

This work presents an improved single fiber pull-out test for fiber/matrix interface characterization. This test has been used to study the Inter-Facial Shear Strength ‘IFSS’ of hemp fibers reinforced polypropylene (PP). For this aim, the fiber diameter has been carefully measured using a tomography inspired method. The fiber section contour can then be approximated by a circle or a polygon. The results show that the IFSS is overestimated if the circular approximation is used. The Influence of the molding temperature on the IFSS has also been studied. We find that a molding temperature of 183◦C leads to better interfacial properties. Above or below this temperature the interface strength is reduced.

Keywords: Interface, pull-out, processing, temperature, hemp, polypropylene, composite.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2097
2331 A New Analytical Approach to Reconstruct Residual Stresses Due to Turning Process

Authors: G.H. Farrahi, S.A. Faghidian, D.J. Smith

Abstract:

A thin layer on the component surface can be found with high tensile residual stresses, due to turning operations, which can dangerously affect the fatigue performance of the component. In this paper an analytical approach is presented to reconstruct the residual stress field from a limited incomplete set of measurements. Airy stress function is used as the primary unknown to directly solve the equilibrium equations and satisfying the boundary conditions. In this new method there exists the flexibility to impose the physical conditions that govern the behavior of residual stress to achieve a meaningful complete stress field. The analysis is also coupled to a least squares approximation and a regularization method to provide stability of the inverse problem. The power of this new method is then demonstrated by analyzing some experimental measurements and achieving a good agreement between the model prediction and the results obtained from residual stress measurement.

Keywords: Residual stress, Limited measurements, Inverse problems, Turning process.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1430
2330 Detecting the Nonlinearity in Time Series from Continuous Dynamic Systems Based on Delay Vector Variance Method

Authors: Shumin Hou, Yourong Li, Sanxing Zhao

Abstract:

Much time series data is generally from continuous dynamic system. Firstly, this paper studies the detection of the nonlinearity of time series from continuous dynamics systems by applying the Phase-randomized surrogate algorithm. Then, the Delay Vector Variance (DVV) method is introduced into nonlinearity test. The results show that under the different sampling conditions, the opposite detection of nonlinearity is obtained via using traditional test statistics methods, which include the third-order autocovariance and the asymmetry due to time reversal. Whereas the DVV method can perform well on determining nonlinear of Lorenz signal. It indicates that the proposed method can describe the continuous dynamics signal effectively.

Keywords: Nonlinearity, Time series, continuous dynamics system, DVV method

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1626
2329 A Study on the Interlaminar Shear Strength of Carbon Fiber Reinforced Plastics Depending on the Lamination Methods

Authors: Min Sang Lee, Hee Jae Shin, In Pyo Cha, Sun Ho Ko, Hyun Kyung Yoon, Hong Gun Kim, Lee Ku Kwac

Abstract:

The prepreg process among the CFRP (Carbon Fiber Reinforced Plastic) forming methods is the short term of ‘Pre-impregnation’, which is widely used for aerospace composites that require a high quality property such as a fiber-reinforced woven fabric, in which an epoxy hardening resin is impregnated the reality. However, that this process requires continuous researches and developments for its commercialization because the delamination characteristically develops between the layers when a great weight is loaded from outside to supplement such demerit, three lamination methods among the prepreg lamination methods of CFRP were designed to minimize the delamination between the layers due to external impacts. Further, the newly designed methods and the existing lamination methods were analyzed through a mechanical characteristic test, Interlaminar Shear Strength test. The Interlaminar Shear Strength test result confirmed that the newly proposed three lamination methods, i.e. the Roll, Half and Zigzag laminations, presented more excellent strengths compared to the conventional Ply lamination. The interlaminar shear strength in the roll method with relatively dense fiber distribution was approximately 1.75% higher than that in the existing ply lamination method, and in the half method, it was approximately 0.78% higher.

Keywords: Carbon Fiber Reinforced Plastic (CFRP), Pre-Impregnation, Laminating Method, Interlaminar Shear Strength (ILSS).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2910
2328 Development of AA2024 Matrix Composites Reinforced with Micro Yttrium through Cold Compaction with Superior Mechanical Properties

Authors: C. H. S. Vidyasagar, D. B. Karunakar

Abstract:

In this present work, five different composite samples with AA2024 as matrix and varying amounts of yttrium (0.1-0.5 wt.%) as reinforcement are developed through cold compaction. The microstructures of the developed composite samples revealed that the yttrium reinforcement caused grain refinement up to 0.3 wt.% and beyond which the refinement is not effective. The microstructure revealed Al2Cu precipitation which strengthened the composite up to 0.3 wt.% yttrium reinforcement. Upon further increase in yttrium reinforcement, the intermetallics and the precipitation coarsen and their corresponding strengthening effect decreases. The mechanical characterization revealed that the composite sample reinforced with 0.3 wt.% yttrium showed highest mechanical properties like 82 HV of hardness, 276 MPa Ultimate Tensile Strength (UTS), 229 MPa Yield Strength (YS) and an elongation (EL) of 18.9% respectively. However, the relative density of the developed composites decreased with the increase in yttrium reinforcement.

Keywords: Mechanical properties, AA 2024 matrix, yttrium reinforcement, cold compaction, precipitation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 658
2327 Analysis of Physicochemical Properties on Prediction of R5, X4 and R5X4 HIV-1 Coreceptor Usage

Authors: Kai-Ti Hsu, Hui-Ling Huang, Chun-Wei Tung, Yi-Hsiung Chen, Shinn-Ying Ho

Abstract:

Bioinformatics methods for predicting the T cell coreceptor usage from the array of membrane protein of HIV-1 are investigated. In this study, we aim to propose an effective prediction method for dealing with the three-class classification problem of CXCR4 (X4), CCR5 (R5) and CCR5/CXCR4 (R5X4). We made efforts in investigating the coreceptor prediction problem as follows: 1) proposing a feature set of informative physicochemical properties which is cooperated with SVM to achieve high prediction test accuracy of 81.48%, compared with the existing method with accuracy of 70.00%; 2) establishing a large up-to-date data set by increasing the size from 159 to 1225 sequences to verify the proposed prediction method where the mean test accuracy is 88.59%, and 3) analyzing the set of 14 informative physicochemical properties to further understand the characteristics of HIV-1coreceptors.

Keywords: Coreceptor, genetic algorithm, HIV-1, SVM, physicochemical properties, prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2385
2326 Compressive Strength and Workability Characteristics of Low-Calcium Fly ash-based Self-Compacting Geopolymer Concrete

Authors: M. Fareed Ahmed, M. Fadhil Nuruddin, Nasir Shafiq

Abstract:

Due to growing environmental concerns of the cement industry, alternative cement technologies have become an area of increasing interest. It is now believed that new binders are indispensable for enhanced environmental and durability performance. Self-compacting Geopolymer concrete is an innovative method and improved way of concreting operation that does not require vibration for placing it and is produced by complete elimination of ordinary Portland cement. This paper documents the assessment of the compressive strength and workability characteristics of low-calcium fly ash based selfcompacting geopolymer concrete. The essential workability properties of the freshly prepared Self-compacting Geopolymer concrete such as filling ability, passing ability and segregation resistance were evaluated by using Slump flow, V-funnel, L-box and J-ring test methods. The fundamental requirements of high flowability and segregation resistance as specified by guidelines on Self Compacting Concrete by EFNARC were satisfied. In addition, compressive strength was determined and the test results are included here. This paper also reports the effect of extra water, curing time and curing temperature on the compressive strength of self-compacting geopolymer concrete. The test results show that extra water in the concrete mix plays a significant role. Also, longer curing time and curing the concrete specimens at higher temperatures will result in higher compressive strength.

Keywords: Fly ash, Geopolymer Concrete, Self-compactingconcrete, Self-compacting Geopolymer concrete

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4584
2325 Modelling of Composite Steel and Concrete Beam with the Lightweight Concrete Slab

Authors: V. Přivřelová

Abstract:

Well-designed composite steel and concrete structures highlight the good material properties and lower the deficiencies of steel and concrete, in particular they make use of high tensile strength of steel and high stiffness of concrete. The most common composite steel and concrete structure is a simply supported beam, which concrete slab transferring the slab load to a beam is connected to the steel cross-section. The aim of this paper is to find the most adequate numerical model of a simply supported composite beam with the cross-sectional and material parameters based on the results of a processed parametric study and numerical analysis. The paper also evaluates the suitability of using compact concrete with the lightweight aggregates for composite steel and concrete beams. The most adequate numerical model will be used in the resent future to compare the results of laboratory tests.

Keywords: Composite beams, high-performance concrete, highstrength steel, lightweight concrete slab, modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2520
2324 Effect of Replacement of Unripe Banana Flour for Rice Flour on Physical Properties and Resistant Starch Content of Rice Noodle

Authors: W. Tiboonbun, M. Sungsri-in, A. Moongngarm

Abstract:

This work was conducted to improve the level of resistant starch (RS) in a rice noodle using unripe banana flour and to investigate the effect of substitution of unripe banana flour for rice flour on the physical properties of rice noodle. In order to prepare rice noodles, the unripe banana flour were replaced the rice flour with different degrees of substitutions including 0, 20, 40, 60, 80, and 100%. The results indicated that substitution of unripe banana flour was significantly affected the viscosity properties of noodle flour, color, cooking loss, RS and total starch content of noodle. It was found that the noodle prepared from 100% unripe banana indicated the greatest changes on the viscosity properties and color profiles. It also showed the highest values of cooking loss (2.53%), tensile strength (129.03%), and RS content (13.15%).

Keywords: Banana flour, Rice noodle, Resistant starch, Unripebanana flour

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2996
2323 Development of EPID-based Real time Dose Verification for Dynamic IMRT

Authors: Todsaporn Fuangrod, Daryl J. O'Connor, Boyd MC McCurdy, Peter B. Greer

Abstract:

An electronic portal image device (EPID) has become a method of patient-specific IMRT dose verification for radiotherapy. Research studies have focused on pre and post-treatment verification, however, there are currently no interventional procedures using EPID dosimetry that measure the dose in real time as a mechanism to ensure that overdoses do not occur and underdoses are detected as soon as is practically possible. As a result, an EPID-based real time dose verification system for dynamic IMRT was developed and was implemented with MATLAB/Simulink. The EPID image acquisition was set to continuous acquisition mode at 1.4 images per second. The system defined the time constraint gap, or execution gap at the image acquisition time, so that every calculation must be completed before the next image capture is completed. In addition, the <=-evaluation method was used for dose comparison, with two types of comparison processes; individual image and cumulative dose comparison monitored. The outputs of the system are the <=-map, the percent of <=<1, and mean-<= versus time, all in real time. Two strategies were used to test the system, including an error detection test and a clinical data test. The system can monitor the actual dose delivery compared with the treatment plan data or previous treatment dose delivery that means a radiation therapist is able to switch off the machine when the error is detected.

Keywords: real-time dose verification, EPID dosimetry, simulation, dynamic IMRT

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2188
2322 Seismic Performance Evaluation of Bridge Structures Using 3D Finite Element Methods in South Korea

Authors: Woo Young Jung, Bu Seog Ju

Abstract:

This study described the seismic performance evaluation of bridge structures, located near Daegu metropolitan city in Korea. The structural design code or regulatory guidelines is focusing on the protection of brittle failure or collapse in bridges’ lifetime during an earthquake. This paper illustrated the procedure in terms of the safety evaluation of bridges using simple linear elastic 3D Finite Element (FE) model in ABAQUS platform. The design response spectra based on KBC 2009 were then developed, in order to understand the seismic behavior of bridge structures. Besides, the multiple directional earthquakes were applied and it revealed that the most dominated earthquake direction was transverse direction of the bridge. Also, the bridge structure under the compressive stress was more fragile than the tensile stress and the vertical direction of seismic ground motions was not significantly affected to the structural system.

Keywords: Bridge, Finite Element, 3D model, Earthquake, Spectrum.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1640
2321 Conversion of Modified Commercial Polyacrylonitrile Fibers to Carbon Fibers

Authors: R. Eslami Farsani, A. Shokuhfar, A. Sedghi

Abstract:

Carbon fibers are fabricated from different materials, such as special polyacrylonitrile (PAN) fibers, rayon fibers and pitch. Among these three groups of materials, PAN fibers are the most widely used precursor for the manufacture of carbon fibers. The process of fabrication carbon fibers from special PAN fibers includes two steps; oxidative stabilization at low temperature and carbonization at high temperatures in an inert atmosphere. Due to the high price of raw materials (special PAN fibers), carbon fibers are still expensive. In the present work the main goal is making carbon fibers from low price commercial PAN fibers with modified chemical compositions. The results show that in case of conducting completes stabilization process, it is possible to produce carbon fibers with desirable tensile strength from this type of PAN fibers. To this matter, thermal characteristics of commercial PAN fibers were investigated and based upon the obtained results, with some changes in conventional procedure of stabilization in terms of temperature and time variables; the desirable conditions of complete stabilization is achieved.

Keywords: Modified Commercial PAN Fibers, Stabilization, Carbonization, Carbon Fibers.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2919
2320 Green Prossesing of PS/Nanoparticle Fibers and Studying Morphology and Properties

Authors: M. Kheirandish, S. Borhani

Abstract:

In this experiment Polystyrene/Zinc-oxide (PS/ZnO) nanocomposite fibers were produced by electrospinning technique using limonene as a green solvent. First, the morphology of electrospun pure polystyrene (PS) and PS/ZnO nanocomposite fibers investigated by SEM. Results showed the PS fiber diameter decreased by increasing concentration of Zinc Oxide nanoparticles (ZnO NPs). Thermo Gravimetric Analysis (TGA) results showed thermal stability of nanocomposites increased by increasing ZnO NPs in PS electrospun fibers. Considering Differential Scanning Calorimeter (DSC) thermograms for electrospun PS fibers indicated that introduction of ZnO NPs into fibers affects the glass transition temperature (Tg) by reducing it. Also, UV protection properties of nanocomposite fibers were increased by increasing ZnO concentration. Evaluating the effect of metal oxide NPs amount on mechanical properties of electrospun layer showed that tensile strength and elasticity modulus of the electrospun layer of PS increased by addition of ZnO NPs. X-ray diffraction (XRD) pattern of nanopcomposite fibers confirmed the presence of NPs in the samples.

Keywords: Electrospininng, nanoparticle, polystyrene, ZnO.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2240
2319 Out-of-Plane Bending Properties of Out-of-Autoclave Thermosetting Prepregs during Forming Processes

Authors: Hassan A. Alshahrani, Mehdi H. Hojjati

Abstract:

In order to predict and model wrinkling which is caused by out of plane deformation due to compressive loading in the plane of the material during composite prepregs forming, it is necessary to quantitatively understand the relative magnitude of the bending stiffness. This study aims to examine the bending properties of out-of-autoclave (OOA) thermosetting prepreg under vertical cantilever test condition. A direct method for characterizing the bending behavior of composite prepregs was developed. The results from direct measurement were compared with results derived from an image-processing procedure that analyses the captured image during the vertical bending test. A numerical simulation was performed using ABAQUS to confirm the bending stiffness value.

Keywords: Bending stiffness, out of autoclave prepreg, forming process, numerical simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1687
2318 Elasto-Visco-Plastic-Damage Model for Pre-Strained 304L Stainless Steel Subjected to Low Temperature

Authors: Jeong-Hyeon Kim, Ki-Yeob Kang, Myung-Hyun Kim, Jae-Myung Lee

Abstract:

Primary barrier of membrane type LNG containment system consist of corrugated 304L stainless steel. This 304L stainless steel is austenitic stainless steel which shows different material behaviors owing to phase transformation during the plastic work. Even though corrugated primary barriers are subjected to significant amounts of pre-strain due to press working, quantitative mechanical behavior on the effect of pre-straining at cryogenic temperatures are not available. In this study, pre-strain level and pre-strain temperature dependent tensile tests are carried to investigate mechanical behaviors. Also, constitutive equations with material parameters are suggested for a verification study.

Keywords: Constitutive equation, corrugated sheet, pre-strain effect, elasto-visco-plastic-damage model, 304L stainless steel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1634
2317 A Study of Combined Mechanical and Chemical Stabilisation of Fine Grained Dredge Soil of River Jhelum

Authors: Adnan F. Sheikh, Fayaz A. Mir

Abstract:

After the recent devastating flood in Kashmir in 2014, dredging of the local water bodies, especially Jhelum River has become a priority for the government. Local government under the project name of 'Comprehensive Flood Management Programme' plans to undertake an increase in discharge of existing flood channels by removal of encroachments and acquisition of additional land, dredging and other works of the water bodies. The total quantity of soil to be dredged will be 16.15 lac cumecs. Dredged soil is a major component that would result from the project which requires disposal/utilization. This study analyses the effect of cement and sand on the engineering properties of soil. The tests were conducted with variable additions of sand (10%, 20% and 30%), whereas cement was added at 12%. Samples with following compositions: soil-cement (12%) and soil-sand (30%) were tested as well. Laboratory experiments were conducted to determine the engineering characteristics of soil, i.e., compaction, strength, and CBR characteristics. The strength characteristics of the soil were determined by unconfined compressive strength test and direct shear test. Unconfined compressive strength of the soil was tested immediately and for a curing period of seven days. CBR test was performed for unsoaked, soaked (worst condition- 4 days) and cured (4 days) samples.

Keywords: Comprehensive flood management programme, dredge soil, strength characteristics, flood.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 887
2316 The Effects of Drill and Practice Courseware on Students’ Achievement and Motivation in Learning English

Authors: Y. T. Gee, I. N. Umar

Abstract:

Students’ achievement and motivation in learning English in Malaysia is a worrying trend as it is lagging behind several other countries in Asia. Thus, necessary actions have to be taken by the parties concerned to overcome this problem. The purpose of this research was to study the effects of drill and practice courseware on students’ achievement and motivation in learning English language. A multimedia courseware was developed for this purpose. The independent variable was the drill and practice courseware while the dependent variables were the students’ achievement and motivation. Their achievement was measured using pre-test and post-test scores, while motivation was measured using a questionnaire. A total of 60 students from three vernacular primary schools in a northern state in Malaysia were randomly selected in this study. The findings indicate: (1) a significant difference between the students’ pre-test and posttest scores after using the courseware, (2) no significant difference in the achievement score between male and female students after using the courseware, (3) a significant difference in motivation score between the female and the male students, and (4) while the female students scored significantly higher than the male students in the aspects of relevance, confidence and satisfaction, no significant difference in terms of attention was observed between them. Overall, the findings clearly indicate that although the female students are significantly more motivated than their male students, they are equally good in terms of achievement after learning from the courseware. Through this study, the drill and practice courseware is proven to influence the students’ learning and motivation.

Keywords: Courseware, drill and practice, English learning, motivation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4088