Search results for: Character strength
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1536

Search results for: Character strength

846 Shear Behaviour of RC Deep Beams with Openings Strengthened with Carbon Fiber Reinforced Polymer

Authors: Mannal Tariq

Abstract:

Construction industry is making progress at a high pace. The trend of the world is getting more biased towards the high rise buildings. Deep beams are one of the most common elements in modern construction having small span to depth ratio. Deep beams are mostly used as transfer girders. This experimental study consists of 16 reinforced concrete (RC) deep beams. These beams were divided into two groups; A and B. Groups A and B consist of eight beams each, having 381 mm (15 in) and 457 mm (18 in) depth respectively. Each group was further subdivided into four sub groups each consisting of two identical beams. Each subgroup was comprised of solid/control beam (without opening), opening above neutral axis (NA), at NA and below NA. Except for control beams, all beams with openings were strengthened with carbon fibre reinforced polymer (CFRP) vertical strips. These eight groups differ from each other based on depth and location of openings. For testing sake, all beams have been loaded with two symmetrical point loads. All beams have been designed based on strut and tie model concept. The outcome of experimental investigation elaborates the difference in the shear behaviour of deep beams based on depth and location of circular openings variation. 457 mm (18 in) deep beam with openings above NA show the highest strength and 381 mm (15 in) deep beam with openings below NA show the least strength. CFRP sheets played a vital role in increasing the shear capacity of beams.

Keywords: CFRP, deep beams, openings in deep beams, strut and tie model, shear behaviour.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1336
845 Enhanced Character Based Algorithm for Small Parsimony

Authors: Parvinder Singh Sandhu, Sumeet Kaur Sehra, Karmjit Kaur

Abstract:

Phylogenetic tree is a graphical representation of the evolutionary relationship among three or more genes or organisms. These trees show relatedness of data sets, species or genes divergence time and nature of their common ancestors. Quality of a phylogenetic tree requires parsimony criterion. Various approaches have been proposed for constructing most parsimonious trees. This paper is concerned about calculating and optimizing the changes of state that are needed called Small Parsimony Algorithms. This paper has proposed enhanced small parsimony algorithm to give better score based on number of evolutionary changes needed to produce the observed sequence changes tree and also give the ancestor of the given input.

Keywords: Phylogenetic Analysis, Small Parsimony, EnhancedFitch Algorithm, Enhanced Sakoff Algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1333
844 Determination of the Characteristics for Ferroresonance Phenomenon in Electric Power Systems

Authors: Sezen Yildirim, Tahir Çetin Akinci, Serhat Seker, Nazmi Ekren

Abstract:

Ferroresonance is an electrical phenomenon in nonlinear character, which frequently occurs in power system due to transmission line faults and single or more-phase switching on the lines as well as usage of the saturable transformers. In this study, the ferroresonance phenomena are investigated under the modeling of the West Anatolian Electric Power Network of 380 kV in Turkey. The ferroresonance event is observed as a result of removing the loads at the end of the lines. In this sense, two different cases are considered. At first, the switching is applied at 2nd second and the ferroresonance affects are observed between 2nd and 4th seconds in the voltage variations of the phase-R. Hence the ferroresonance and nonferroresonance parts of the overall data are compared with each others using the Fourier transform techniques to show the ferroresonance affects.

Keywords: Ferroresonance, West Anatolian Electric Power System, Power System Modeling, Switching, Spectral Analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2677
843 Application Problems of Anchor Dowels in Reinforced Concrete Shear Wall and Frame Connections

Authors: Musa H. Arslan

Abstract:

Strengthening of the existing seismically deficient reinforced concrete (RC) buildings is an important issue in earthquake prone regions. Addition of RC shear wall as infill or external walls into the structural system has been a commonly preferred strengthening technique since the Big Erzincan Earthquake occurred in Turkey, 1992. The newly added rigid infill walls act primarily as shear walls and relieve the non-ductile existing frames from being subjected to large shear demands providing that new RC inner or external walls are adequately anchored to the existing weak RC frame. The performance of the RC shear walls-RC weak frame connections by steel anchor dowels depends on some parameters such as compressive strength of the existing RC frame concrete, diameter and embedment length of anchored rebar, type of rebar, yielding stress of bar, properties of used chemicals, position of the anchor bars in RC. In this study, application problems of the steel anchor dowels have been checked with some field studies such as tensile test. Two different RC buildings which will be strengthened were selected, and before strengthening, some tests have been performed in the existing RC buildings. According to the field observation and experimental studies, if the concrete compressive strength is lower than 10 MPa, the performance of the anchors is reduced by 70%.

Keywords: Anchor dowel, concrete, damage, reinforced concrete, shear wall, frame.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1433
842 Strong Adhesion and High Wettability at Polyetheretherketone-Resin/Titanium-Dioxide Interface Obtained with Crystal-Orientation Control

Authors: Tomio Iwasaki, Yosuke Kawahito

Abstract:

The adhesion strength and wettability at the interfaces between a polyetheretherketone (PEEK) resin and titanium dioxide (TiO2) have become more important because direct joining of PEEK resin and titanium (Ti), whose surface has usually the oxide (TiO2), is needed not only in vehicles such as airplanes, automobiles, and space vehicles, but also in medical devices such as implants. To realize strong joint between the PEEK resin and TiO2, the dependence of the adhesion strength and wettability on crystal orientations of rutile TiO2 were investigated by using molecular simulations. Molecular dynamics simulations were conducted by combining quantum-mechanics equation of electrons with Newton’s equation of motion of nuclear coordinates (atomic coordinates). By putting a PEEK-resin sphere on a rutile TiO2 surface and by heating the system to 650 K, the contact angles at the interfaces were calculated to evaluate the wettability. After the system is cooled to 300 K from 650 K, to evaluate the adhesin strength, the adhesive fracture energy is calculated as the difference between the energy of the PEEK-TiO2 attached state and that of the PEEK-TiO2 detached state. The results of the contact angles showed that PEEK resin on the TiO2(100) and that on the TiO2(001) surface has low wettability with large contact angles. On the other hand, PEEK resin on the TiO2(110) surface has high wettability with a small contact angle. The results of the adhesive fracture energies showed that the adhesion at the PEEK-resin/TiO2(100) and PEEK-resin/TiO2(001) interfaces are weak. On the other hand, the adhesion at the PEEK-resin/TiO2(110) interface is strong. To clarify the reason that the higher wettability and stronger adhesion are obtained at the PEEK/TiO2(110) interface than at the at the PEEK/TiO2(100) and PEEK/TiO2(001) interfaces, atomic configurations at the interfaces were visualized. The atomic configuration at the PEEK/TiO2(110) interface showed that the lattice-matched coherent interface is realized, and the atomic density is high. On the other hand, the atomic configuration at the PEEK/TiO2(001) interface showed the lattice-unmatched incoherent interface. The atomic configuration at the PEEK/TiO2(100) interface showed that the atomic density is very low although the lattice-matched interface is realized. Therefore, the lattice matching and the high atomic density at the PEEK/TiO2(001) interface are considered to be dominant factors in the high wettability and strong adhesion.

Keywords: Adhesion, direct joining, PEEK, TiO2, wettability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 414
841 Arabic Character Recognition Using Regression Curves with the Expectation Maximization Algorithm

Authors: Abdullah A. AlShaher

Abstract:

In this paper, we demonstrate how regression curves can be used to recognize 2D non-rigid handwritten shapes. Each shape is represented by a set of non-overlapping uniformly distributed landmarks. The underlying models utilize 2nd order of polynomials to model shapes within a training set. To estimate the regression models, we need to extract the required coefficients which describe the variations for a set of shape class. Hence, a least square method is used to estimate such modes. We then proceed by training these coefficients using the apparatus Expectation Maximization algorithm. Recognition is carried out by finding the least error landmarks displacement with respect to the model curves. Handwritten isolated Arabic characters are used to evaluate our approach.

Keywords: Shape recognition, Arabic handwritten characters, regression curves, expectation maximization algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 694
840 A Combined Approach of a Sequential Life Testing and an Accelerated Life Testing Applied to a Low-Alloy High Strength Steel Component

Authors: D. I. De Souza, D. R. Fonseca, G. P. Azevedo

Abstract:

Sometimes the amount of time available for testing could be considerably less than the expected lifetime of the component. To overcome such a problem, there is the accelerated life-testing alternative aimed at forcing components to fail by testing them at much higher-than-intended application conditions. These models are known as acceleration models. One possible way to translate test results obtained under accelerated conditions to normal using conditions could be through the application of the “Maxwell Distribution Law.” In this paper we will apply a combined approach of a sequential life testing and an accelerated life testing to a low alloy high-strength steel component used in the construction of overpasses in Brazil. The underlying sampling distribution will be three-parameter Inverse Weibull model. To estimate the three parameters of the Inverse Weibull model we will use a maximum likelihood approach for censored failure data. We will be assuming a linear acceleration condition. To evaluate the accuracy (significance) of the parameter values obtained under normal conditions for the underlying Inverse Weibull model we will apply to the expected normal failure times a sequential life testing using a truncation mechanism. An example will illustrate the application of this procedure.

Keywords: Sequential Life Testing, Accelerated Life Testing, Underlying Three-Parameter Weibull Model, Maximum Likelihood Approach, Hypothesis Testing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1629
839 Breakdown of LDPE Film under Heavy Water Absorption

Authors: Eka PW, T. Okazaki, Y. Murakami, N., Hozumi, M. Nagao

Abstract:

The breakdown strength characteristic of Low Density Polyethylene films (LDPE) under DC voltage application and the effect of water absorption have been studied. Mainly, our experiment was investigated under two conditions; dry and heavy water absorption. Under DC ramp voltage, the result found that the breakdown strength under heavy water absorption has a lower value than dry condition. In order to clarify the effect, the temperature rise of film was observed using non contact thermograph until the occurrence of the electrical breakdown and the conduction current of the sample was also measured in correlation with the thermograph measurement. From the observations, it was shown that under the heavy water absorption, the hot spot in the samples appeared at lower voltage. At the same voltage the temperature of the hot spot and conduction current was higher than that under the dry condition. The measurement result has a good correlation between the existence of a critical field for conduction current and thermograph observation. In case of the heavy water absorption, the occurrence of the threshold field was earlier than the dry condition as result lead to higher of conduction current and the temperature rise appears after threshold field was significantly increased in increasing of field. The higher temperature rise was caused by the higher current conduction as the result the insulation leads to breakdown to the lower field application.

Keywords: Low density polyethylene, heavy water absorption, conduction current, temperature rise.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1869
838 Material and Parameter Analysis of the PolyJet Process for Mold Making Using Design of Experiments

Authors: A. Kampker, K. Kreisköther, C. Reinders

Abstract:

Since additive manufacturing technologies constantly advance, the use of this technology in mold making seems reasonable. Many manufacturers of additive manufacturing machines, however, do not offer any suggestions on how to parameterize the machine to achieve optimal results for mold making. The purpose of this research is to determine the interdependencies of different materials and parameters within the PolyJet process by using design of experiments (DoE), to additively manufacture molds, e.g. for thermoforming and injection molding applications. Therefore, the general requirements of thermoforming molds, such as heat resistance, surface quality and hardness, have been identified. Then, different materials and parameters of the PolyJet process, such as the orientation of the printed part, the layer thickness, the printing mode (matte or glossy), the distance between printed parts and the scaling of parts, have been examined. The multifactorial analysis covers the following properties of the printed samples: Tensile strength, tensile modulus, bending strength, elongation at break, surface quality, heat deflection temperature and surface hardness. The key objective of this research is that by joining the results from the DoE with the requirements of the mold making, optimal and tailored molds can be additively manufactured with the PolyJet process. These additively manufactured molds can then be used in prototyping processes, in process testing and in small to medium batch production.

Keywords: Additive manufacturing, design of experiments, mold making, PolyJet.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1713
837 Automated Feature Points Management for Video Mosaic Construction

Authors: Jing Li, Quan Pan, Stan. Z. Li, Tao Yang

Abstract:

A novel algorithm for construct a seamless video mosaic of the entire panorama continuously by automatically analyzing and managing feature points, including management of quantity and quality, from the sequence is presented. Since a video contains significant redundancy, so that not all consecutive video images are required to create a mosaic. Only some key images need to be selected. Meanwhile, feature-based methods for mosaicing rely on correction of feature points? correspondence deeply, and if the key images have large frame interval, the mosaic will often be interrupted by the scarcity of corresponding feature points. A unique character of the method is its ability to handle all the problems above in video mosaicing. Experiments have been performed under various conditions, the results show that our method could achieve fast and accurate video mosaic construction. Keywords?video mosaic, feature points management, homography estimation.

Keywords: Video mosaic, feature points management, homography estimation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1811
836 Heat Treatment and Rest-Inserted Exercise Enhances EMG Activity of the Lower Limb

Authors: Jae Kyun Bang, Sung Jae Hwang, Chang Yong Ko, Chi Hyun Kim

Abstract:

Prolonged immobilization leads to significant weakness and atrophy of the skeletal muscle and can also impair the recovery of muscle strength following injury. Therefore, it is important to minimize the period under immobilization and accelerate the return to normal activity. This study examined the effects of heat treatment and rest-inserted exercise on the muscle activity of the lower limb during knee flexion/extension. Twelve healthy subjects were assigned to 4 groups that included: (1) heat treatment + rest-inserted exercise; (2) heat + continuous exercise; (3) no heat + rest-inserted exercise; and (4) no heat + continuous exercise. Heat treatment was applied for 15 mins prior to exercise. Continuous exercise groups performed knee flexion/extension at 0.5 Hz for 300 cycles without rest whereas rest-inserted exercise groups performed the same exercise but with 2 mins rest inserted every 60 cycles of continuous exercise. Changes in the rectus femoris and hamstring muscle activities were assessed at 0, 1, and 2 weeks of treatment by measuring the electromyography signals of isokinetic maximum voluntary contraction. Significant increases in both the rectus femoris and hamstring muscles were observed after 2 weeks of treatment only when both heat treatment and rest-inserted exercise were performed. These results suggest that combination of various treatment techniques, such as heat treatment and rest-inserted exercise, may expedite the recovery of muscle strength following immobilization.

Keywords: Electromyography, Heat Treatment, Muscle, Rest-Inserted Exercise.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1859
835 Finite Element Modeling and Mechanical Properties of Aluminum Proceed by Equal Channel Angular Pressing Process

Authors: F. Al-Mufadi, F. Djavanroodi

Abstract:

During the last decade ultrafine grained (UFG) and nano-structured (NS) materials have experienced a rapid development. In this research work finite element analysis has been carried out to investigate the plastic strain distribution in equal channel angular process (ECAP). The magnitudes of Standard deviation (S. D.) and inhomogeneity index (Ci) were compared for different ECAP passes. Verification of a three-dimensional finite element model was performed with experimental tests. Finally the mechanical property including impact energy of ultrafine grained pure commercially pure Aluminum produced by severe plastic deformation method has been examined. For this aim, equal channel angular pressing die with the channel angle, outer corner angle and channel diameter of 90°, 20° and 20mm had been designed and manufactured. Commercial pure Aluminum billets were ECAPed up to four passes by route BC at the ambient temperature. The results indicated that there is a great improvement at the hardness measurement, yield strength and ultimate tensile strength after ECAP process. It is found that the magnitudes of HV reach 67HV from 21HV after the final stage of process. Also, about 330% and 285% enhancement at the YS and UTS values have been obtained after the fourth pass as compared to the as-received conditions, respectively. On the other hand, the elongation to failure and impact energy have been reduced by 23% and 50% after imposing four passes of ECAP process, respectively.

Keywords: SPD, ECAP, FEM, Pure Al, Mechanical properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2499
834 Effect of Non-Metallic Inclusion from the Continuous Casting Process on the Multi-Stage Forging Process and the Tensile Strength of the Bolt: A Case Study

Authors: Tomasz Dubiel, Tadeusz Balawender, Mirosław Osetek

Abstract:

The paper presents the influence of non-metallic inclusions on the multi-stage forging process and the mechanical properties of the dodecagon socket bolt used in the automotive industry. The detected metallurgical defect was so large that it directly influenced the mechanical properties of the bolt and resulted in failure to meet the requirements of the mechanical property class. In order to assess the defect, an X-ray examination and metallographic examination of the defective bolt were performed, showing exogenous non-metallic inclusion. The size of the defect on the cross section was 0.531 mm in width and 1.523 mm in length; the defect was continuous along the entire axis of the bolt. In analysis, a finite element method (FEM) simulation of the multi-stage forging process was designed, taking into account a non-metallic inclusion parallel to the sample axis, reflecting the studied case. The process of defect propagation due to material upset in the head area was analyzed. The final forging stage in shaping the dodecagonal socket and filling the flange area was particularly studied. The effect of the defect was observed to significantly reduce the effective cross-section as a result of the expansion of the defect perpendicular to the axis of the bolt. The mechanical properties of products with and without the defect were analyzed. In the first step, the hardness test confirmed that the required value for the mechanical class 8.8 of both bolt types was obtained. In the second step, the bolts were subjected to a static tensile test. The bolts without the defect gave a positive result, while all 10 bolts with the defect gave a negative result, achieving a tensile strength below the requirements. Tensile strength tests were confirmed by metallographic tests and FEM simulation with perpendicular inclusion spread in the area of the head. The bolts were damaged directly under the bolt head, which is inconsistent with the requirements of ISO 898-1. It has been shown that non-metallic inclusions with orientation in accordance with the axis of the bolt can directly cause loss of functionality and these defects should be detected even before assembling in the machine element.

Keywords: continuous casting, multi-stage forging, non-metallic inclusion, upset bolt head

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 530
833 Effect of Using Stone Cutting Waste on the Compression Strength and Slump Characteristics of Concrete

Authors: Kamel K. Alzboon, Khalid N.Mahasneh

Abstract:

The aim of this work is to study the possible use of stone cutting sludge waste in concrete production, which would reduce both the environmental impact and the production cost .Slurry sludge was used a source of water in concrete production, which was obtained from Samara factory/Jordan, The physico-chemical and mineralogical characterization of the sludge was carried out to identify the major components and to compare it with the typical sand used to produce concrete. Samples analysis showed that 96% of slurry sludge volume is water, so it should be considered as an important source of water. Results indicated that the use of slurry sludge as water source in concrete production has insignificant effect on compression strength, while it has a sharp effect on the slump values. Using slurry sludge with a percentage of 25% of the total water content obtained successful concrete samples regarding slump and compression tests. To clarify slurry sludge, settling process can be used to remove the suspended solid. A settling period of 30 min. obtained 99% removal efficiency. The clarified water is suitable for using in concrete mixes, which reduce water consumption, conserve water recourses, increase the profit, reduce operation cost and save the environment. Additionally, the dry sludge could be used in the mix design instead of the fine materials with sizes < 160 um. This application could conserve the natural materials and solve the environmental and economical problem caused by sludge accumulation.

Keywords: Concrete, recycle, sludge, slurry waste, stone cutting waste, waste.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3551
832 Effect of Cow bone and Groundnut Shell Reinforced in Epoxy Resin on the Mechanical Properties and Microstructure of the Composites

Authors: O. I. Rufai, G. I. Lawal, B. O. Bolasodun, S. I. Durowaye, J. O. Etoh

Abstract:

It is an established fact that polymers have several physical limitations such as low stiffness and low resistance to impact on loading. Hence, polymers do not usually have requisite mechanical strength for application in various fields. The reinforcement by high strength fibers provides the polymer substantially enhanced mechanical properties and makes them more suitable for a large number of diverse applications. This research evaluates the effects of particulate Cow bone and Groundnut shell additions on the mechanical properties and microstructure of cow bone and groundnut shell reinforced epoxy composite in order to assess the possibility of using it as a material for engineering applications. Cow bone and groundnut shell particles reinforced with epoxy (CBRPC and GSRPC) was prepared by varying the cow bone and groundnut shell particles from 0-25 wt% with 5 wt% intervals. A Hybrid of the Cow bone and Groundnut shell (HGSCB) reinforce with epoxy was also prepared. The mechanical properties of the developed composites were investigated. Optical microscopy was used to examine the microstructure of the composites. The results revealed that mechanical properties did not increase uniformly with additions in filler but exhibited maximum properties at specific percentages of filler additions. From the Microscopic evaluation, it was discovered that homogeneity decreases with increase in % filler, this could be due to poor interfacial bonding.

Keywords: Groundnut shell reinforced polymer composite (GSRPC), Cow bone reinforced polymer composite (CBRPC), Hybrid of ground nutshell and cowbone (HGSCB).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3042
831 Synthesis of Mg/B Containing Compound in a Modified Microwave Oven

Authors: Gülşah Çelik Gül, Figen Kurtuluş

Abstract:

Magnesium containing boron compounds with hexagonal structure have been drawn much attention due to their superconductive nature. The main target of this work is new modified microwave oven by on our own has an ability about passing through a gas in the oven medium for attainment of oxygen-free compounds such as c-BN.  Mg containing boride was synthesized by modified-microwave method under nitrogen atmosphere using amorphous boron and magnesium source in appropriate molar ratio. Microwave oven with oxygen free environment has been modified to aimed to obtain magnesium boride without oxygen. Characterizations were done by powder X-ray diffraction (XRD), and Fourier transform infrared (FTIR) spectroscopy. Mg containing boride, generally named magnesium boride, with amorphous character without oxygen is obtained via designed microwave oven system.

Keywords: Magnesium containing boron compounds, modified microwave synthesis, powder X-ray diffraction, FTIR.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1077
830 Performance of Concrete Grout under Aggressive Chloride Environment in Sabah

Authors: S. Imbin, S. Dullah, H. Asrah, P. S. Kumar, M. E. Rahman, M. A. Mannan

Abstract:

Service life of existing reinforced concrete (RC) structures in coastal towns of Sabah has been affected very much. Concrete crack, spalling of concrete cover and reinforcement rusting of RC buildings are seen even within 5 years of construction in Sabah. Hence, in this study a new mix design of concrete grout was developed using locally available materials and investigated under two curing conditions and workability, compressive strength, Accelerated Mortar Bar Test (AMBT), water absorption, volume of permeable voids (VPV), Sorptivity and 90-days salt ponding test were conducted. The compressive strength of concrete grout at the age 90 days was found to be 44.49 N/mm2 under water curing. It was observed that the percentage of mortar bar length change was below 1% for developed concrete grout. The water absorption of the concrete grout was in between the range of 0.88 % to 3.60 % under two different curing up to the age 90 days. It was also observed that the VPV of concrete was in the range of 0 % to 9.75 and 2.44% to 13.05% under water curing and site curing respectively. It was found that the Sorptivity of the concrete grout under water curing at the age of 28 days is 0.211mm/√min and at the age 90 day are 0.067 mm/√min. The chloride content decreased greatly, 90% after a depth of 15 mm. It was noticed that the site cured samples showed higher chloride contents near surface compared to water cured samples. This investigation suggested that the developed mix design of concrete grout using locally available construction materials can be used for crack repairing of existing RC structures in Sabah.

Keywords: Concrete grout, Salt ponding, Sorptivity, Water absorption.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2840
829 Fatigue Tests of New Assembly Bolt Connections for Perspective Temporary Steel Railway Bridges

Authors: Marcela Karmazínová, Michal Štrba, Milan Pilgr

Abstract:

The paper deals with the problems of the actual behavior, failure mechanism and load-carrying capacity of the special bolt connection developed and intended for the assembly connections of truss main girders of perspective railway temporary steel bridges. Within the framework of this problem solution, several types of structural details of assembly joints have been considered as the conceptual structural design. Based on the preliminary evaluation of advantages or disadvantages of these ones, in principle two basic structural configurations – so-called “tooth” and “splice-plate” connections have been selected for the subsequent detailed investigation. This investigation is mainly based on the experimental verification of the actual behavior, strain and failure mechanism and corresponding strength of the connection, and on its numerical modeling using FEM. This paper is focused only on the cyclic loading (fatigue) tests results of “splice-plate” connections and their evaluation, which have already been finished. Simultaneously with the fatigue tests, the static loading tests have been realized too, but these ones, as well as FEM numerical modeling, are not the subject of this paper.

Keywords: Bolt assembly connection, Cyclic loading, Failure mechanisms, Fatigue strength, Steel structure, Structural detail category, Temporary railway bridge.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2156
828 Numerical Evaluation of Lateral Bearing Capacity of Piles in Cement-Treated Soils

Authors: Reza Ziaie Moayed, Saeideh Mohammadi

Abstract:

Soft soil is used in many of civil engineering projects like coastal, marine and road projects. Because of low shear strength and stiffness of soft soils, large settlement and low bearing capacity will occur under superstructure loads. This will make the civil engineering activities more difficult and costlier. In the case of soft soils, improvement is a suitable method to increase the shear strength and stiffness for engineering purposes. In recent years, the artificial cementation of soil by cement and lime has been extensively used for soft soil improvement. Cement stabilization is a well-established technique for improving soft soils. Artificial cementation increases the shear strength and hardness of the natural soils. On the other hand, in soft soils, the use of piles to transfer loads to the depths of ground is usual. By using cement treated soil around the piles, high bearing capacity and low settlement in piles can be achieved. In the present study, lateral bearing capacity of short piles in cemented soils is investigated by numerical approach. For this purpose, three dimensional (3D) finite difference software, FLAC 3D is used. Cement treated soil has a strain hardening-softening behavior, because of breaking of bonds between cement agent and soil particle. To simulate such behavior, strain hardening-softening soil constitutive model is used for cement treated soft soil. Additionally, conventional elastic-plastic Mohr Coulomb constitutive model and linear elastic model are used for stress-strain behavior of natural soils and pile. To determine the parameters of constitutive models and also for verification of numerical model, the results of available triaxial laboratory tests on and insitu loading of piles in cement treated soft soil are used. Different parameters are considered in parametric study to determine the effective parameters on the bearing of the piles on cemented treated soils. In the present paper, the effect of various length and height of the artificial cemented area, different diameter and length of the pile and the properties of the materials are studied. Also, the effect of choosing a constitutive model for cemented treated soils in the bearing capacity of the pile is investigated.

Keywords: Cement-treated soils, pile, lateral capacity, FLAC 3D.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 771
827 n− Strongly Gorenstein Projective, Injective and Flat Modules

Authors: Jianmin Xing Wei Shao

Abstract:

Let R be a ring and n a fixed positive integer, we investigate the properties of n-strongly Gorenstein projective, injective and flat modules. Using the homological theory , we prove that the tensor product of an n-strongly Gorenstein projective (flat) right R -module and projective (flat) left R-module is also n-strongly Gorenstein projective (flat). Let R be a coherent ring ,we prove that the character module of an n -strongly Gorenstein flat left R -module is an n-strongly Gorenstein injective right R -module . At last, let R be a commutative ring and S a multiplicatively closed set of R , we establish the relation between n -strongly Gorenstein projective (injective , flat ) R -modules and n-strongly Gorenstein projective (injective , flat ) S−1R-modules. All conclusions in this paper is helpful for the research of Gorenstein dimensions in future.

Keywords: Commutative ring, n-strongly Gorenstein projective, n-Strongly Gorenstein injective, n-strongly Gorenstein flat, S-ring.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1540
826 Co-Articulation between Consonant and Vowel in Cantonese Syllables

Authors: Wai-Sum Lee

Abstract:

This study investigates C-V and V-C co-articulation in Cantonese monosyllables of the CV, VC or CVC structure, with C = one of the three stop consonants [p, t, k] and V = one of the three corner vowels [i, a, u]. Five repetitions of each test syllable on a randomized list were elicited from Cantonese young adult speakers in their early-20s. A research tool, EMA AG500, was used to record the synchronized audio signals and articulatory data at three different locations of the tongue – tongue tip, tongue middle, and tongue back – and the positions of the upper and lower lips during the test syllables. The main findings based on the articulatory data collected from two male Cantonese speakers are as follows: (i) For the syllable-initial [p-], strong co-articulation is observed when [p-] preceding the high vowel [i] or [u], but not the low vowel [a]. As for the syllable-final [-p], it is strongly co-articulated with the preceding vowel, even when the vowel is [a]. (ii) The co-articulation between the initial [t-] and the following vowel of any type is weak. In the syllable-final position, the degree of co-articulatory resistance of [-t] is also large when following the vowel [u], but [-t] is largely co-articulated with the preceding vowel when the vowel is [i] or [a]. (iii) The strength of co-articulation differs when the initial [k-] precedes the different types of vowel. A stronger co-articulation between [k-] and [i] than between [k-] and [u], and the strength of co-articulation is much reduced between [k-] and [a]. However, in the syllable-final position, there is strong co-articulation between [-k] and the preceding vowel [a]. (iv) Among the three types of stop consonants in the syllable-initial position, the decreasing degree of co-articulatory resistance (CR) is [t-] > [k-] > [p-], and the degree of CR is reduced during all three types of stop in the syllable-final position. In general, the data on co-articulation between consonant and vowel in the Cantonese monosyllables are similar to those in other languages reported in previous studies.

Keywords: Cantonese, co-articulation, consonant, vowel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1105
825 Some Laws of Rhythm Formulas of Ussuli in the Dancing Culture of People in the Middle and the Central Asia

Authors: G. Saitova, A. Mashurova, F. Mashurova

Abstract:

In the national and professional music of oral tradition of many people in the East there is the metric formula called “ussuli", that is to say rhythmic constructions of different character and a composition. Ussuli in translation from Arabic means the law. The cultural contacts of the ancient and medieval inhabitants of the Central Asia, India, China, East Turkestan, Iraq, Afghanistan, Turkey, and Iran have played a certain role in formation of both musical and dancing heritage of each of these people. During theatrical shows many dances were performed under the accompaniment of percussion instruments as nagra, dayulpaz, doll. The abovementioned tools are used as the obligatory accompanying tool in an orchestra and at support of dancing acts as the solo tool. Dynamics of development of a dancing composition, at times execution of technique of movement depends on various combinations of ussuli and their receptions of execution.

Keywords: Dancing, plastic, rhythm, ussuli.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2201
824 Effects of Kenaf and Rice Husk on Water Absorption and Flexural Properties of Kenaf/CaCO3/HDPE and Rice Husk/CaCO3/HDPE Hybrid Composites

Authors: Noor Zuhaira Abd Aziz, Rahmah Mohamed, Mohd Muizz Fahimi M.

Abstract:

Rice husk and kenaf filled with calcium carbonate (CaCO3) and high density polyethylene (HDPE) composite were prepared separately using twin-screw extruder at 50rpm. Different filler loading up to 30 parts of rice husk particulate and kenaf fiber were mixed with the fixed 30% amount of CaCO3 mineral filler to produce rice husk/CaCO3/HDPE and kenaf/CaCO3/HDPE hybrid composites. In this study, the effects of natural fiber for both rice husk and kenaf in CaCO3/HDPE composite on physical, mechanical and morphology properties were investigated. Field Emission Scanning Microscope (FeSEM) was used to investigate the impact fracture surfaces of the hybrid composite. The property analyses showed that water absorption increased with the presence of kenaf and rice husk fillers. Natural fibers in composite significantly influence water absorption properties due to natural characters of fibers which contain cellulose, hemicellulose and lignin structures. The result showed that 10% of additional natural fibers into hybrid composite had caused decreased flexural strength, however additional of high natural fiber (>10%) filler loading has proved to increase its flexural strength.

Keywords: Hybrid composites, Water absorption, Mechanical properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2614
823 Multiple Subcarrier Indoor Geolocation System in MIMO-OFDM WLAN APs Structure

Authors: Abdul Hafiizh, Shigeki Obote, Kenichi Kagoshima

Abstract:

This report aims to utilize existing and future Multiple-Input Multiple-Output Orthogonal Frequency Division Multiplexing Wireless Local Area Network (MIMO-OFDM WLAN) systems characteristics–such as multiple subcarriers, multiple antennas, and channel estimation characteristics–for indoor location estimation systems based on the Direction of Arrival (DOA) and Radio Signal Strength Indication (RSSI) methods. Hybrid of DOA-RSSI methods also evaluated. In the experimental data result, we show that location estimation accuracy performances can be increased by minimizing the multipath fading effect. This is done using multiple subcarrier frequencies over wideband frequencies to estimate one location. The proposed methods are analyzed in both a wide indoor environment and a typical room-sized office. In the experiments, WLAN terminal locations are estimated by measuring multiple subcarriers from arrays of three dipole antennas of access points (AP). This research demonstrates highly accurate, robust and hardware-free add-on software for indoor location estimations based on a MIMO-OFDM WLAN system.

Keywords: Direction of Arrival (DOA), Indoor location estimation method, Multipath Fading, MIMO-OFDM, Received Signal Strength Indication (RSSI), WLAN, Hybrid DOA-RSSI

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1787
822 Persian Printed Numerals Classification Using Extended Moment Invariants

Authors: Hamid Reza Boveiri

Abstract:

Classification of Persian printed numeral characters has been considered and a proposed system has been introduced. In representation stage, for the first time in Persian optical character recognition, extended moment invariants has been utilized as characters image descriptor. In classification stage, four different classifiers namely minimum mean distance, nearest neighbor rule, multi layer perceptron, and fuzzy min-max neural network has been used, which first and second are traditional nonparametric statistical classifier. Third is a well-known neural network and forth is a kind of fuzzy neural network that is based on utilizing hyperbox fuzzy sets. Set of different experiments has been done and variety of results has been presented. The results showed that extended moment invariants are qualified as features to classify Persian printed numeral characters.

Keywords: Extended moment invariants, optical characterrecognition, Persian numerals classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1905
821 Analytical Study on Threats to Wetland Ecosystems and their Solutions in the Framework of the Ramsar Convention

Authors: Ehsan Daryadel, Farhad Talaei

Abstract:

Wetlands are one of the most important ecosystems on Earth. Nevertheless, various challenges threaten these ecosystems and disrupt their ecological character. Among these, the effects of human-based threats are more devastating. Following mass degradation of wetlands during 1970s, the Ramsar Convention on Wetlands (Ramsar, Iran, 1971) was concluded to conserve wetlands of international importance and prevent destruction and degradation of such ecosystems through wise use of wetlands as a mean to achieve sustainable development in all over the world. Therefore, in this paper, efforts have been made to analyze threats to wetlands and then investigate solutions in the framework of the Ramsar Convention. Finally, in order to operate these mechanisms, this study concludes that all states should in turn make their best effort to improve and restore global wetlands through preservation of environmental standards and close contribution and also through taking joint measures with other states effectively.

Keywords: Ramsar Convention, Threats, Wetland Ecosystems, Wise Use.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4661
820 Vibrational Behavior of Cylindrical Shells in Axial Magnetic Field

Authors: Sedrak Vardanyan

Abstract:

The investigation of the vibrational character of magnetic cylindrical shells placed in an axial magnetic field has important practical applications. In this work, we study the vibrational behaviour of such a cylindrical shell by making use of the so-called exact space treatment, which does not assume any hypothesis. We discuss the effects of several practically important boundary conditions on the vibrations of the described setup. We find that, for some cases of boundary conditions, e.g. clamped, simply supported or peripherally earthed, as well as for some values of the wave numbers, the vibrational frequencies of the shell are approximately zero. The theoretical and numerical exploration of this fact confirms that the vibrations are absent or attenuate very rapidly. For all the considered cases, the imaginary part of the frequencies is negative, which implies stability for the vibrational process.

Keywords: Free vibrations, magnetic cylindrical shells, exact space treatment, bending vibrational frequencies.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 801
819 Iron Doped Biomaterial Calcium Borate: Synthesis and Characterization

Authors: G. Çelik Gül, F. Kurtuluş

Abstract:

Colemanite is the most common borate mineral, and the main source of the boron required by plants, human, and earth. Transition metals exhibit optical and physical properties such as; non-linear optical character, structural diversity, thermal stability, long cycle life and luminescent radiation. The doping of colemanite with a transition metal, bring it very interesting and attractive properties which make them applicable in industry. Iron doped calcium borate was synthesized by conventional solid state method at 1200 °C for 12 h with a systematic pathway. X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy/energy dispersive analyze (SEM/EDS) were used to characterize structural and morphological properties. Also, thermal properties were recorded by thermogravimetric-differential thermal analysis (TG/DTA). 

Keywords: Colemanite, conventional synthesis, powder x-ray diffraction, borates.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 990
818 Influence of Stacking Sequence and Temperature on Buckling Resistance of GFRP Infill Panel

Authors: Viriyavudh Sim, SeungHyun Kim, JungKyu Choi, WooYoung Jung

Abstract:

Glass Fiber Reinforced Polymer (GFRP) is a major evolution for energy dissipation when used as infill material for seismic retrofitting of steel frame, a basic PMC infill wall system consists of two GFRP laminates surrounding an infill of foam core. This paper presents numerical analysis in terms of buckling resistance of GFRP sandwich infill panels system under the influence of environment temperature and stacking sequence of laminate skin. Mode of failure under in-plane compression is studied by means of numerical analysis with ABAQUS platform. Parameters considered in this study are contact length between infill and frame, laminate stacking sequence of GFRP skin and variation of mechanical properties due to increment of temperature. The analysis is done with four cases of simple stacking sequence over a range of temperature. The result showed that both the effect of temperature and stacking sequence alter the performance of entire panel system. The rises of temperature resulted in the decrements of the panel’s strength. This is due to the polymeric nature of this material. Additionally, the contact length also displays the effect on the performance of infill panel. Furthermore, the laminate stiffness can be modified by orientation of laminate, which can increase the infill panel strength. Hence, optimal performance of the entire panel system can be obtained by comparing different cases of stacking sequence.

Keywords: Buckling resistance, GFRP infill panel, stacking sequence, temperature dependent.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1489
817 Experimental Study on Mechanical Properties of Commercially Pure Copper Processed by Severe Plastic Deformation Technique-Equal Channel Angular Extrusion

Authors: Krishnaiah Arkanti, Ramulu Malothu

Abstract:

The experiments have been conducted to study the mechanical properties of commercially pure copper processing at room temperature by severe plastic deformation using equal channel angular extrusion (ECAE) through a die of 90oangle up to 3 passes by route BC i.e. rotating the sample in the same direction by 90o after each pass. ECAE is used to produce from existing coarse grains to ultra-fine, equiaxed grains structure with high angle grain boundaries in submicron level by introducing a large amount of shear strain in the presence of hydrostatic pressure into the material without changing billet shape or dimension. Mechanical testing plays an important role in evaluating fundamental properties of engineering materials as well as in developing new materials and in controlling the quality of materials for use in design and construction. Yield stress, ultimate tensile stress and ductility are structure sensitive properties and vary with the structure of the material. Microhardness and tensile tests were carried out to evaluate the hardness, strength and ductility of the ECAE processed materials. The results reveal that the strength and hardness of commercially pure copper samples improved significantly without losing much ductility after each pass.

Keywords: Equal Channel Angular Extrusion, Severe Plastic Deformation, Copper, Mechanical Properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1656