Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30184
Multiple Subcarrier Indoor Geolocation System in MIMO-OFDM WLAN APs Structure

Authors: Abdul Hafiizh, Shigeki Obote, Kenichi Kagoshima

Abstract:

This report aims to utilize existing and future Multiple-Input Multiple-Output Orthogonal Frequency Division Multiplexing Wireless Local Area Network (MIMO-OFDM WLAN) systems characteristics–such as multiple subcarriers, multiple antennas, and channel estimation characteristics–for indoor location estimation systems based on the Direction of Arrival (DOA) and Radio Signal Strength Indication (RSSI) methods. Hybrid of DOA-RSSI methods also evaluated. In the experimental data result, we show that location estimation accuracy performances can be increased by minimizing the multipath fading effect. This is done using multiple subcarrier frequencies over wideband frequencies to estimate one location. The proposed methods are analyzed in both a wide indoor environment and a typical room-sized office. In the experiments, WLAN terminal locations are estimated by measuring multiple subcarriers from arrays of three dipole antennas of access points (AP). This research demonstrates highly accurate, robust and hardware-free add-on software for indoor location estimations based on a MIMO-OFDM WLAN system.

Keywords: Direction of Arrival (DOA), Indoor location estimation method, Multipath Fading, MIMO-OFDM, Received Signal Strength Indication (RSSI), WLAN, Hybrid DOA-RSSI

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1071228

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1461

References:


[1] D.H. Shin, T.K. Sung, "Comparisons of error characteristics between TOA and TDOA positioning", IEEE Trans. on Aero. and Elect. Sys., Volume 38, Issue 1, pp.307 - 311, Jan. 2002
[2] A. Ogino, K. Tsunehara, K. Watanabe, K. Fujishima, R. Yamasaki, H. Suzuki, T. Kato, "Integrated Wireless LAN Acees System-Study on Location Method," Multimedia, Distributed, Cooperative, and Mobile Symposium (DICOMO 2003), June 2003.
[3] http://www.ekahau.com/
[4] P. Bahl, V. N. Padmanabhan, "RADAR: An In-Building RF based user location and tracking system," Proceed. of IEEE INFOCOM 2000, Tel-Aviv, Israel, March 2000.
[5] Li Cong; W. Zhuang, "Hybrid TDOA/AOA mobile user location for wideband CDMA cellular systems ", IEEE Trans. on Wireless Comm., Vol. 1, Issue 3, pp. 439 - 447, July 2002.
[6] J. Terada, H. Takahashi, Y. Sato, S. Mutoh, "A novel location-estimation method using direction-of-arrival estimation," 62nd IEEE Veh. Technol. Conf., vol. 1, pp. 424- 428, Sept. 2005.
[7] H. Tsuji " Indoor localization using signal subspaces obtained from array antenna-an experimental evaluation", IEICE Technical Report (In Japanese), AP2006-80, October 2006.
[8] K. Kaemarungsi and P. Krishnamurthy, "Modeling of indoor positioning systems based on location fingerprinting," in Proc. 23rd. Annual Joint Conference of the IEEE Computer and Communications Societies, vol. 2, pp. 1012-1022, Mar. 2004.
[9] Y. Karasawa, "MIMO Propagation Channel Modeling (Japanese Edition)", IEICE Trans. on Comm., Vol.E88-B, No.5, pp.1829-1842, May 2005.
[10] K. Sakaguchi, H.Y.E. Chua, K. Araki, "MIMO Channel Capacity in an Indoor Line-Of-Sight (LOS) Environment", IEICE Trans. on Comm., Vol.E88-B, No.7, pp.3010-3019, July 2005.
[11] A. Hafiizh, F. Imai, M. Minami, K. Ikeda, S. Obote, K. Kagoshima, "Performance Study of DOA-based Indoor Location Positioning Utilizing MIMO Wireless LAN System", ISAP 2006, 1-4 October 2006, Singapore.
[12] A. Hafiizh, F. Imai, M. Minami, K. Ikeda, S. Obote, K. Kagoshima, "Study of DOA-based indoor location positioning utilizing MIMO WLAN system in typical room environment", ISAP 2008, 20-24 August 2007, Niigata Japan.
[13] B.D.V. Veen and K. M. Buckley "Beamforming:A versatile approach to spatial filtering", IEEE ASSP Mag., pp 4-24, April 1988.
[14] N. Kikuma, "Adaptive Signal Processing with Array. Antenna (Japanese edition)", Tokyo, Japan: Science and. Technology Publishing Company, Nov. 1998.