
 

 

 

Abstract—In this paper, we demonstrate how regression curves 
can be used to recognize 2D non-rigid handwritten shapes. Each 
shape is represented by a set of non-overlapping uniformly 
distributed landmarks. The underlying models utilize 2nd order of 
polynomials to model shapes within a training set. To estimate the 
regression models, we need to extract the required coefficients which 
describe the variations for a set of shape class. Hence, a least square 
method is used to estimate such modes. We then proceed by training 
these coefficients using the apparatus Expectation Maximization 
algorithm. Recognition is carried out by finding the least error 
landmarks displacement with respect to the model curves. 
Handwritten isolated Arabic characters are used to evaluate our 
approach. 
 

Keywords—Shape recognition, Arabic handwritten characters, 
regression curves, expectation maximization algorithm.  

I. INTRODUCTION 

HAPE recognition has been the focus of many researchers 
since seven past decades [1] and attracted many 

communities in the field of pattern recognition [2], artificial 
intelligence[3], signal processing [4], image analysis [5], and 
computer vision [6]. The difficulties arise when the shape 
under study exhibits high degree in shape variation: as in 
handwritten characters [7], digits [8], face detection [9], and 
gesture authentication [10]. For a single data, shape variation 
is limited and cannot be captured ultimately due to the fact 
that single data does not provide sufficient information and 
knowledge about the data; therefore, multiple existence of data 
provides better understanding of shape analysis and 
manifested by mixture models [11]. Because of the existence 
of multivariate data under study, there is always the 
requirement to estimate the parameters that describe the data 
that is encapsulated within a mixture of shapes.  

The literature demonstrates many statistical and structural 
approaches with various algorithms to model shape variations 
using supervised and unsupervised learning [12] algorithms. 
In precise, the powerful Expectation Maximization algorithm 
of Dempster [13] comes that has been used widely for such 
cases. The EM algorithm revolves around two step procedure. 
The expectation E step revolves around estimating the 
parameters of a log-likelihood function and pass it to the 
Maximization M step. In a maximization (M) step, the 
algorithm computes parameters maximizing the expected log-
likelihood found on the E step. The process is iterative one 
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until all parameters comes to unchanged. For instance, Jojic 
and Frey [14] have used the EM algorithm to fit mixture 
models to the appearance manifolds for faces. Bishop and 
Winn [15] have used a mixture of principal components 
analyzers to learn and synthesize variations in facial 
appearance. Vasconcelos and Lippman [16] have used the EM 
algorithm to learn queries for content-based image retrieval. 
Finally, several authors have used the EM algorithm to track 
multiple moving objects [17]. Revov et al. [18] have 
developed a generative model which can be used for 
handwritten character recognition. Their method employs the 
EM algorithm to model the distribution of sample points. 

Curves are used widely by research in the computer vision 
society [1]-[5]. Curvatures are mainly used to distinguish 
different shapes such as characters [6], digits, faces [2], and 
topographic maps [3]. Curve fitting [18], [19] is the process of 
constructing a 2nd order or higher mathematical function that 
has the best fit to a series of landmark points. A related topic 
is regression analysis that stresses on probabilistic conclusion 
on how uncertainty is present when fitting a cure to a set of 
data landmarks with marginal errors. Regression curves are 
applied for data visualization [12], [13] to capture the values 
of a function with missing data [14] and to gain the 
relationship of multiple variables.  

In this paper, we demonstrate how curves are used to 
recognize 2D handwritten shapes by fitting 2nd order of 
polynomial quadratic function to a set of landmarks points 
presented in a shape. We then train such curves to capture the 
optimal characteristics of the shapes in the training sets of 
curves. Handwritten Arabic characters are used and tested in 
this investigation.  

II. REGRESSION CURVES 

We would like to extract the best fit modes that describe the 
shapes under study, hence, a multiple image shapes are 
required and is explained by a training sets of class shape  
and the complete sets of shape classes denoted by . Let us 
assume that each training set is represented by the following 
2D training patterns as a long vector 

 
𝑋

𝑥 , 𝑦 , . . , 𝑥 , 𝑦 , 𝑥 , 𝑦 , . . , 𝑥 , 𝑦 , 𝑥 , 𝑦 , . ., 
𝑥 , 𝑦                  (1) 

 
Our model here is a polynomial of higher order. In this 

case, we choose 2nd order of quadratic curves. Consider the 
following generic form of a polynomial of order j 
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𝑓 𝑥  𝑎 𝑎 𝑥 𝑎 𝑥 𝑎 𝑥 ⋯ 𝑎 𝑥

𝑎 ∑ 𝑎 𝑥                    (2) 
 
The nonlinear regression above requires the estimation of 

the coefficients that best fit the sample shape landmarks, we 
approach the least square error between the data y and f(x) in 

 
𝑒𝑟𝑟  ∑ 𝑑  𝑦

 
𝑓 𝑥  𝑦 𝑓 𝑥  𝑦

𝑓 𝑥 𝑦 𝑓 𝑥               (3) 
 

where the goal is to minimize the error, substituting the form 
of (11) to a general least square error  
 

𝑒𝑟𝑟  ∑ 𝑦  𝑎 𝑎 𝑥 𝑎 𝑥 𝑎 𝑥 ⋯

𝑎 𝑥                                       (4) 
 
where T is the number of pattern set, k is the current data 
landmarks point being summed, j is the order of polynomial 
equation. Rewriting (14) in a more readable format  
 

𝑒𝑟𝑟  ∑ 𝑦  𝑎 ∑ 𝑎 𝑥              (5) 
 

Finding the best fit curve is equivalent to minimizing the 
squared distance between the curve and landmark points. The 
aim here is to find the coefficients, hence, solving the 
equations of taking the partial derivative with respect each 
coefficients a0, ak ; for k = 1.. j and set each to zero in  

 

 ∑ 𝑦 𝑎 ∑ 𝑎 𝑥 0          (6) 

 

 ∑ 𝑦 𝑎 ∑ 𝑎 𝑥 𝑥 0       (7) 

 

 ∑ 𝑦 𝑎 ∑ 𝑎 𝑥 𝑥 0      (8) 

 
Rewriting upper equations in the form of matrix and 

applying linear algebra matrix differentiation, we get  
 

⎣
⎢
⎢
⎡ 𝑇 ∑ 𝑥 ∑ 𝑥

∑ 𝑥 ∑ 𝑥 ∑ 𝑥

∑ 𝑥 ∑ 𝑥 ∑ 𝑥 ⎦
⎥
⎥
⎤ 𝑎

𝑎
𝑎

 

∑ 𝑦

∑ 𝑥 𝑦

∑ 𝑥 𝑦

  (9) 

 
Choosing Gaussian elimination procedure to rewrite the 

upper equation in more solvable in  
 

𝐴𝑥 𝐵                                     (10) 
where  

A = 

⎣
⎢
⎢
⎡ 𝑇 ∑ 𝑥 ∑ 𝑥

∑ 𝑥 ∑ 𝑥 ∑ 𝑥

∑ 𝑥 ∑ 𝑥 ∑ 𝑥 ⎦
⎥
⎥
⎤
, X = 

𝑎
𝑎
𝑎

, 

B = 

∑ 𝑦

∑ 𝑥 𝑦

∑ 𝑥 𝑦

                         (11) 

 
solving for X to find the coefficients A, B in  

𝑋  𝐴  ∗ 𝐵                                   (12) 
 
The outcome would be the coefficients a0, a1, a2. We follow 

the similar procedure to find the remaining coefficients of the 
landmarks points. 

III. LEARNING REGRESSION CURVES  

It has been known that when using learning algorithms to 
train models of such a case, the outcome is trained models 
with superior performance than those of untrained models 
bishop [19]. In this stage, we are concerned by capturing the 
optimal curve coefficients which describe the patterns 
variations under testing; hence, training is required by fitting 
the Gaussian mixtures of curve coefficient models to set of 
shape curve patterns. The previous approaches regard 
producing variations in shapes that of a linear fashion. To 
produce more complex shape variations, we have to proceed 
by employing non-linear deformation of a set of curve 
coefficients. Unsupervised learning is used encapsulated 
within a framework of the apparatus Expectation 
Maximization EM algorithm. The idea is borrowed from 
Cootes [20] of constructing point distribution models; 
however, the algorithm is transformed to learn regression 
curves coefficients αt similar to that approach of AlShaher 
[21]. Suppose that a set of curve coefficients αt for a set of 
training patterns is t = (1 … T) where T is the complete set of 
training curves is represented in a long vector of coefficients : 

 
𝛼  𝑎  , 𝑎  , 𝑎  , 𝑎  , 𝑎  , 𝑎  , . . . , 𝑎  𝑎  )    (13) 

 
The mean vector of coefficient patterns is represented by  
 

𝜇  ∑ 𝛼                                (14) 
 
The covariance matrix is then constructed by  
 

∑    ∑ 𝛼  𝜇  𝛼  𝜇                (15) 
 
The following approach is based on fitting a Gaussian 

mixture models to the set of training examples of curve 
coefficients. We further assume that training patterns are 
independent from one each other; thus, they are neither 
flagged nor labelled to any curve class. Each curve class ω 
belongs to the set of curve classes Ω has its own mean µ and 
covariance matrix ∑. With these ingredients, we establish the 
likelihood function for the set of the curve patterns in  

 

𝑝 𝛼 ∏  ∑ 𝑝 𝛼 |𝜇 , ∑                (16) 
 

where the term 𝑝 𝛼 |𝜇 , ∑  is the probability for drawing 
curve pattern αt from the curve-class ω. Associating the above 
likelihood function with the Expectation Maximization 
algorithm, the likelihood function can be written to be iterative 
process of two steps. The process revolves around estimating 
the expected log-likelihood function iteratively in 
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𝓆 𝐶 𝐶

 ∑  ∑ 𝑃 𝛼 , 𝜇 , ∑  𝑋 ln 𝑝 𝛼 |𝜇 , ∑   (17) 
 

where the quantity and 𝜇  and ∑  are the estimated mean 
curve vector and variance covariance matrix both at iteration 
(n) of the algorithm. The quantity 𝑝 𝛼 , 𝜇 , ∑   is the a 
posteriori probability that the training pattern curve belong to 
the curve-class ω at iteration n of the algorithm. The term 
𝑝 𝛼 |𝜇 , ∑   is the probability of distribution of curve-
pattern αt belonging to curve-class ω at iteration ( n + 1 ) of 
the algorithm; thus, the probability density to associate curve- 
patterns αt for ( t = 1 … T ) to class curve-class ω are 
estimated by the updated construction of the mean-vector 

𝜇 , and covariance matrix ∑  at iteration n+1 of the 
algorithm. According to the EM algorithm, it revolves around 
estimation the expected log-likelihood function within two 
iterative processes. In the M or maximization step of the 
algorithm, our aim is to maximize the curve mean-vector 

𝜇 , and covariance matrix ∑ , while, in the E or 
expectation step, the aim is to estimate the distribution of 
curve-patterns at iteration n along with the mixing proportion 
parameters for curve-class ω.  

In the E, or Expectation step of the algorithm, the a 
posteriori curve-class probability is updated by applying the 
Bayes factorization rule to the curve-class distribution density 
at iteration n+1. The new estimate is computed by  

 

𝑝 ∝ , 𝜇 , ∑   
| ,∑   

∑  | ,∑   
          (18) 

 

where the revised curve-class ω mixing proportions 𝜋  at 
iteration (n + 1) is computed in  

 

𝜋  ∑ 𝑝 𝛼 |𝜇 , ∑                  (19) 
 
With that at hand, the distributed curve-pattern αt to the 

class-curve ω is Gaussian distribution and is classified 
according to  

 

𝑝 𝛼 𝜇 , ∑  

| ∑  |
 exp 𝛼 𝜇 𝑋 ∑  𝑋 𝛼 𝜇  (20) 

 
In the M, or Maximization step, our aim is to maximize the 

curve-class ω parameters. The updated curve mean-vector 

𝜇  estimate is computed by  
 

𝜇  ∑ 𝑝 𝛼 , 𝜇 , ∑ 𝛼                (21) 
 
And the new estimate of the curve-class covariance matrix 

is weighted by  
 

∑  ∑ 𝑝 𝛼 , 𝜇 , ∑   𝑋 𝛼 𝜇 𝛼 𝜇  (22) 
 

Both E, and M steps are iteratively converged, the outcome 
of the learning stage is a set of curve-class ω parameters such 

as 𝜇  𝑎𝑛𝑑 ∑   , hence the complete set of all curve-class Ω 
are computed and ready to be used for recognition.  

IV. RECOGNITION 

In this stage, we focus of utilizing the parameters extracted 
from the learning phase for the purpose of shape recognition. 
Here, we assume that the testing shapes  

  
𝑓 𝑡  ∑ ∑ 𝑥 , 𝑦 , 𝑤ℎ𝑒𝑟𝑒 𝑖 1 . . 𝑛 ,  𝑡 1 . . 𝑋  (23) 

 
Hence, each testing pattern is represented by  
 

𝜒  𝑥 , 𝑦 , 𝑥 , 𝑦 , … 𝑥 , 𝑦   for (t = 1 .. X)   (24) 
 
Such testing patterns are classified based on the computing 

the new point position of testing data χ after projecting the 
sequence of curve-coefficients to the testing data in  

 
𝑓 𝑥, 𝑦  ∑ 𝜒  𝛼 𝜒  𝛼 𝜒 𝛼      (25) 

 
So, the sample shape χt is registered to class ω which has 

the highest probability using Bayes rule over the total curve-
classes Ω in  

 

arg min ,

∑ ,
                            (26) 

V. EXPERIMENTS 

We have evaluated our approach with sets of Arabic 
handwritten characters. Here, we have used 23 shape-classes 
for different writers, each with 80 training patterns. In total, 
we have tested the approach with 1840 handwritten Arabic 
character shape patterns for testing and 4600 patterns for 
testing phase. Figs. 1 and 2 show some training patterns used 
in this paper. Fig. 3 shows single shapes and their landmarks 
representation.  

Fig. 4 demonstrates regression sample curve-classes as a 
result of the training stage. Fig. 5 demonstrate the curve-
classes Ω convergence rate graph as a function per iteration 
no. is the training phase. The graphs show how associated 
distributed probabilities for the set of curve-classes Ω 
converged in a few iterations.  

 

 

 

Fig. 1 Training sets sample 
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Fig. 2 Training set sample 2 
 

   

  

Fig. 3 Training patterns and extracted landmarks 
 

  
  

   

Fig. 4 Sample visual of regression Curve-classes 
 

 

Fig. 5 Convergence rate as a function per iteration no. 
 

To take the investigation further, we demonstrate how well 
the approach behaves in the presence of noise. In figure 6, we 
show how recognition rate is achieved when point position 
displacement error is applied. Test shape coordinates are being 
moved away from their original position. The figure shows the 
recognition rate fails to register shapes to their correct class in 
a few iterations and it fails completely when coordinates are 
moved away, yet, increasing variance significantly.  

TABLE I 
RECOGNITION RATE FOR SAMPLE SHAPES 

Shape 
Name 

Sample 
Shape  

Test 
Size 

Correct False 
Recognition 

Rate 

Ain_1 200 191 9 95.5% 

Baa 200 193 7 96.5% 

Dal 200 194 6 97% 

Faa 200 187 13 93.5% 

Haa_1 200 196 4 98% 

Ttah 200 180 20 90% 

Hhah_1 200 178 22 89% 

Ain_2 200 190 10 95% 

Meem 200 182 18 91% 

Seen 200 175 25 87.5% 

Yaa 200 189 11 94.5% 

Haa_2 200 193 7 96.5% 

Waw 200 183 17 91.5% 

Ain_2 200 195 5 97.5% 

Hhah_2 200 172 28 86% 

Kaf_1 200 196 4 98% 

Lam_1 200 193 7 96.5% 

Lam_2 200 181 19 90.5% 

Raa 200 196 4 98% 

Ssad 200 176 24 88% 

Kaf_2 200 192 8 96% 

Noon 200 196 4 98% 

Total 22 classes 4400 4400 6.18% 93.82% 

 

 

Fig. 6 Recognition rate as a function per iteration no with point 
position error 

 
Table I shows recognition rates per curve-classes ω. The 

Table demonstrates recognition rates per curve-class. In total, 
we have achieved 94% recognition rate for such approach.  

VI. CONCLUSION 

In this paper, we have showed how Regression Curves can 
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be used to model the variation of Handwritten Arabic 
characters. The 2nd order of Polynomials curves were injected 
along the skeleton of the proposed shape under study, where 
the appropriate coefficients which describe the shape were 
extracted. We then have used the Apparatus of the Expectation 
Maximization Algorithm to train the set of extracted 
coefficients within a probabilistic framework to capture the 
optimal shape variations coefficients. The set of best fitted 
parameters were then projected in order to recognize 
handwritten shapes using Bayes rule of factorization. The 
proposed approach has been evaluated on sets of Handwritten 
Arabic Shapes for multiple different writers that we have 
achieved a recognition rate of nearly 94% on corrected 
registered shape classes.  

VII. FUTURE WORK 

In this research, there are some shortcomings to the 
approach. One of which is that the is missing thoroughly 
comparison between the proposed method and conventional 
method to demonstrate the effectiveness of such complicated 
method. The second is that the extracted parameters from the 
training stage have not been utilized for the purpose of 
recognition stage in a statistical framework. Thirdly, we 
further investigate how we use deformation parameters to fit 
the align curves to such sample shape, specifically when noise 
is present. 
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