n− Strongly Gorenstein Projective, Injective and Flat Modules
Authors: Jianmin Xing Wei Shao
Abstract:
Let R be a ring and n a fixed positive integer, we investigate the properties of n-strongly Gorenstein projective, injective and flat modules. Using the homological theory , we prove that the tensor product of an n-strongly Gorenstein projective (flat) right R -module and projective (flat) left R-module is also n-strongly Gorenstein projective (flat). Let R be a coherent ring ,we prove that the character module of an n -strongly Gorenstein flat left R -module is an n-strongly Gorenstein injective right R -module . At last, let R be a commutative ring and S a multiplicatively closed set of R , we establish the relation between n -strongly Gorenstein projective (injective , flat ) R -modules and n-strongly Gorenstein projective (injective , flat ) S−1R-modules. All conclusions in this paper is helpful for the research of Gorenstein dimensions in future.
Keywords: Commutative ring, n-strongly Gorenstein projective, n-Strongly Gorenstein injective, n-strongly Gorenstein flat, S-ring.
Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1335678
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1561References:
[1] M. Auslander and M. Bridger, Stable Module Theory, Amer. Math. Soc,
Providence, Rhode Island, (1969).
[2] E.E.Enochs, O.M.G.Jenda, Gorenstein injective and projective modules,
Math.Z.220(1995)611-633.
[3] E. E. Enochs and O.M.G.Jenda, On Gorenstein injective modules,
Comm.Algebra 21(1993)3489-3501
[4] L.L.Avramov,A.Martsinkovsky,Absolute, relative and Tate cohomology of
modules of finite Gorenstein dimension, Proc. London Math.Soc.85(2002)
393-440.
[5] L.W.Christensen, A.Frankild, H.Holm, On Gorenstein projective, injective
and flat dimensions-A functorial description with applications, J.Algebra
302(2006)231-279.
[6] H.Holm, Gorenstein homological dimensions, J.Pure Appl.Algebra
189(2004)167-193.
[7] J.Xu,Flat Covers of Modules, Lecture Notes in Math., vol.1634, Springer-
Verlag, Berlin, 1996.
[8] D.Bennis, N.Mahdou, Strongly Gorenstein projective, injective and flat
modules, J.Pure Appl. Algebra 210 (2007)437-445.
[9] D.Bennis and N.Mahdou, A generalization of strongly Gorenstein projective
modules, http://arxiv.org/abs/0812.2566v1.
[10] J J Rotman. Editor, An Introduction to Homological Algebra. Academic
Press , New York(1979).
[11] M.S.Osborne, Basic Homological Algebra, Grad. Texts in Math.,
Springer-Verlag, NewYork, Berlin, 2003.
[12] H.Bass,Finitistic dimension and a homological generalization of semiprimary
rings, Trans.Amer.Math.Soc. 95(1960) 466-488.
[13] I.Sakhajev, On a criterion of projectivity of finitely generated flat
modules, Izv.Vuzov10(1991) 68-75.
[14] H.Cartan and S.Eilenberg,Homological Algebra.Reprint of the 1956
original,Princeton Landmarks in Math., Princeton Univ.Press, Princeton,
1999.
[15] A. Shamsuddin, Finite normalizing extensions, J.Algebra 151 (1992)
218-220.
[16] X.Yang and Z.Liu, Strongly Gorenstein projective, injective and flat
modules, J. Algebra 320 (2008),2659-2674.
[17] E.E.Enochs, O.M.G.Jenda, Relative Homological Algebra, de Gruyter
Exp.Math.,vol.30, Walter deGruyter and Co.,Berlin, 2000.