Search results for: defect frequency
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1864

Search results for: defect frequency

1234 Detection of Sags, Swells, and Transients Using Windowing Technique Based On Continuous S-Transform (CST)

Authors: K. Daud, A. F. Abidin, N. Hamzah, H. S. Nagindar Singh

Abstract:

This paper produces a new approach for power quality analysis using a windowing technique based on Continuous S-transform (CST). This half-cycle window technique approach can detect almost correctly for initial detection of disturbances i.e. voltage sags, swells, and transients. Samples in half cycle window has been analyzed based continuous S-transform for entire disturbance waveform. The modified parameter has been produced by MATLAB programming m-file based on continuous s-transform. CST has better time frequency and localization property than traditional and also has ability to detect the disturbance under noisy condition correctly. The excellent time-frequency resolution characteristic of the CST makes it the most an attractive candidate for analysis of power system disturbances signals.

Keywords: Power quality disturbances, initial detection, half cycle windowing, continuous S-transform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2025
1233 Theoretical Study on the Forced Vibration of One Degree of Freedom System, Equipped with Inerter, under Load-Type or Displacement-Type Excitation

Authors: Barenten Suciu

Abstract:

In this paper, a theoretical study on the forced vibration of one degree of freedom system equipped with inerter, working under load-type or displacement-type excitation, is presented. Differential equations of movement are solved under cosinusoidal excitation, and explicit relations for the magnitude, resonant magnitude, phase angle, resonant frequency, and critical frequency are obtained. Influence of the inertance and damping on these dynamic characteristics is clarified. From the obtained results, one concludes that the inerter increases the magnitude of vibration and the phase angle of the damped mechanical system. Moreover, the magnitude ratio and difference of phase angles are not depending on the actual type of excitation. Consequently, such kind of similitude allows for the comparison of various theoretical and experimental results, which can be broadly found in the literature.

Keywords: One degree of freedom vibration, inerter, parallel connection, load-type excitation, displacement-type excitation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 836
1232 Machine Learning Methods for Flood Hazard Mapping

Authors: S. Zappacosta, C. Bove, M. Carmela Marinelli, P. di Lauro, K. Spasenovic, L. Ostano, G. Aiello, M. Pietrosanto

Abstract:

This paper proposes a neural network approach for assessing flood hazard mapping. The core of the model is a machine learning component fed by frequency ratios, namely statistical correlations between flood event occurrences and a selected number of topographic properties. The classification capability was compared with the flood hazard mapping River Basin Plans (Piani Assetto Idrogeologico, acronimed as PAI) designed by the Italian Institute for Environmental Research and Defence, ISPRA (Istituto Superiore per la Protezione e la Ricerca Ambientale), encoding four different increasing flood hazard levels. The study area of Piemonte, an Italian region, has been considered without loss of generality. The frequency ratios may be used as a standalone block to model the flood hazard mapping. Nevertheless, the mixture with a neural network improves the classification power of several percentage points, and may be proposed as a basic tool to model the flood hazard map in a wider scope.

Keywords: flood modeling, hazard map, neural networks, hydrogeological risk, flood risk assessment

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 679
1231 High Efficiency Electrolyte Lithium Battery and RF Characterization

Authors: Wei Quan, Liu Chao, Mohammed N. Afsar

Abstract:

The dielectric properties and ionic conductivity of novel "ceramic state" polymer electrolytes for high capacity lithium battery are characterized by Radio frequency and Microwave methods in two broad frequency ranges from 50 Hz to 20 KHz and 4 GHz to 40 GHz. This innovative solid polymer electrolyte which is highly ionic conductive (10-3 S/cm at room temperature) from -40oC to +150oC can be used in any battery application. Such polymer exhibits properties more like a ceramic rather than polymer. The various applied measurement methods produced accurate dielectric results for comprehensive analysis of electrochemical properties and ion transportation mechanism of this newly invented polymer electrolyte. Two techniques and instruments employing air gap measurement by Capacitance Bridge and in-waveguide measurement by vector network analyzer are applied to measure the complex dielectric spectra. The complex dielectric spectra are used to determine the complex alternating current electrical conductivity and thus the ionic conductivity.

Keywords: Polymer electrolyte, dielectric permittivity, lithium battery, ionic relaxation, microwave measurement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2394
1230 Large Vibration Amplitudes of Circular Functionally Graded Thin Plates Resting on Winkler Elastic Foundations

Authors: El Kaak, Rachid, El Bikri, Khalid, Benamar, Rhali

Abstract:

This paper describes a study of geometrically nonlinear free vibration of thin circular functionally graded (CFGP) plates resting on Winkler elastic foundations. The material properties of the functionally graded composites examined here are assumed to be graded smoothly and continuously through the direction of the plate thickness according to a power law and are estimated using the rule of mixture. The theoretical model is based on the classical Plate theory and the Von-Kármán geometrical nonlinearity assumptions. An homogenization procedure (HP) is developed to reduce the problem considered here to that of isotropic homogeneous circular plates resting on Winkler foundation. Hamilton-s principle is applied and a multimode approach is derived to calculate the fundamental nonlinear frequency parameters which are found to be in a good agreement with the published results. On the other hand, the influence of the foundation parameters on the nonlinear fundamental frequency has also been analysed.

Keywords: Functionally graded materials, nonlinear vibrations, Winkler foundation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1824
1229 Blind Identification Channel Using Higher Order Cumulants with Application to Equalization for MC−CDMA System

Authors: Mohammed Zidane, Said Safi, Mohamed Sabri, Ahmed Boumezzough

Abstract:

In this paper we propose an algorithm based on higher order cumulants, for blind impulse response identification of frequency radio channels and downlink (MC−CDMA) system Equalization. In order to test its efficiency, we have compared with another algorithm proposed in the literature, for that we considered on theoretical channel as the Proakis’s ‘B’ channel and practical frequency selective fading channel, called Broadband Radio Access Network (BRAN C), normalized for (MC−CDMA) systems, excited by non-Gaussian sequences. In the part of (MC−CDMA), we use the Minimum Mean Square Error (MMSE) equalizer after the channel identification to correct the channel’s distortion. The simulation results, in noisy environment and for different signal to noise ratio (SNR), are presented to illustrate the accuracy of the proposed algorithm.

Keywords: Blind identification and equalization, Higher Order Cumulants, (MC−CDMA) system, MMSE equalizer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1761
1228 Robust Power System Stabilizer Design Using Particle Swarm Optimization Technique

Authors: Sidhartha Panda, N. P. Padhy

Abstract:

Power system stabilizers (PSS) are now routinely used in the industry to damp out power system oscillations. In this paper, particle swarm optimization (PSO) technique is applied to design a robust power system stabilizer (PSS). The design problem of the proposed controller is formulated as an optimization problem and PSO is employed to search for optimal controller parameters. By minimizing the time-domain based objective function, in which the deviation in the oscillatory rotor speed of the generator is involved; stability performance of the system is improved. The non-linear simulation results are presented under wide range of operating conditions; disturbances at different locations as well as for various fault clearing sequences to show the effectiveness and robustness of the proposed controller and their ability to provide efficient damping of low frequency oscillations. Further, all the simulations results are compared with a conventionally designed power system stabilizer to show the superiority of the proposed design approach.

Keywords: Particle swarm optimization, power system stabilizer, low frequency oscillations, power system stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2336
1227 Mitigation of ISI for Next Generation Wireless Channels in Outdoor Vehicular Environments

Authors: Mohd. Israil, M. Salim Beg

Abstract:

In order to accommodate various multimedia services, next generation wireless networks are characterized by very high transmission bit rates. Thus, in such systems and networks, the received signal is not only limited by noise but - especially with increasing symbols rate often more significantly by the intersymbol interference (ISI) caused by the time dispersive radio channels such as those are used in this work. This paper deals with the study of the performance of detector for high bit rate transmission on some worst case models of frequency selective fading channels for outdoor mobile radio environments. This paper deals with a number of different wireless channels with different power profiles and different number of resolvable paths. All the radio channels generated in this paper are for outdoor vehicular environments with Doppler spread of 100 Hz. A carrier frequency of 1800 MHz is used and all the channels used in this work are such that they are useful for next generation wireless systems. Schemes for mitigation of ISI with adaptive equalizers of different types have been investigated and their performances have been investigated in terms of BER measured as a function of SNR.

Keywords: Mobile channels, Rayleigh Fading, Equalization, NMLD.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1399
1226 Research of Amplitude-Frequency Characteristics of Nonlinear Oscillations of the Interface of Two-Layered Liquid

Authors: Win Ko Ko, A. N. Temnov

Abstract:

The problem of nonlinear oscillations of a two-layer liquid completely filling a limited volume is considered. Using two basic asymmetric harmonics excited in two mutually perpendicular planes, ordinary differential equations of nonlinear oscillations of the interface of a two-layer liquid are investigated. In this paper, hydrodynamic coefficients of linear and nonlinear problems in integral relations were determined. As a result, the instability regions of forced oscillations of a two-layered liquid in a cylindrical tank occurring in the plane of action of the disturbing force are constructed, as well as the dynamic instability regions of the parametric resonance for different ratios of densities of the upper and lower liquids depending on the amplitudes of liquids from the excitations frequencies. Steady-state regimes of fluid motion were found in the regions of dynamic instability of the initial oscillation form. The Bubnov-Galerkin method is used to construct instability regions for approximate solution of nonlinear differential equations.

Keywords: Hydrodynamic coefficients, instability region, nonlinear oscillations, resonance frequency, two-layered liquid.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 545
1225 Three Dimensional Numerical Simulation of a Full Scale CANDU Reactor Moderator to Study Temperature Fluctuations

Authors: A. Sarchami, N. Ashgriz, M. Kwee

Abstract:

Threedimensional numerical simulations are conducted on a full scale CANDU Moderator and Transient variations of the temperature and velocity distributions inside the tank are determined. The results show that the flow and temperature distributions inside the moderator tank are three dimensional and no symmetry plane can be identified.Competition between the upward moving buoyancy driven flows and the downward moving momentum driven flows, results in the formation of circulation zones. The moderator tank operates in the buoyancy driven mode and any small disturbances in the flow or temperature makes the system unstable and asymmetric. Different types of temperature fluctuations are noted inside the tank: (i) large amplitude are at the boundaries between the hot and cold (ii) low amplitude are in the core of the tank (iii) high frequency fluctuations are in the regions with high velocities and (iv) low frequency fluctuations are in the regions with lower velocities.

Keywords: Bruce, Fluctuations, Numerical, Temperature, Thermal hydraulics

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1910
1224 Dynamic Variation in Nano-Scale CMOS SRAM Cells Due to LF/RTS Noise and Threshold Voltage

Authors: M. Fadlallah, G. Ghibaudo, C. G. Theodorou

Abstract:

The dynamic variation in memory devices such as the Static Random Access Memory can give errors in read or write operations. In this paper, the effect of low-frequency and random telegraph noise on the dynamic variation of one SRAM cell is detailed. The effect on circuit noise, speed, and length of time of processing is examined, using the Supply Read Retention Voltage and the Read Static Noise Margin. New test run methods are also developed. The obtained results simulation shows the importance of noise caused by dynamic variation, and the impact of Random Telegraph noise on SRAM variability is examined by evaluating the statistical distributions of Random Telegraph noise amplitude in the pull-up, pull-down. The threshold voltage mismatch between neighboring cell transistors due to intrinsic fluctuations typically contributes to larger reductions in static noise margin. Also the contribution of each of the SRAM transistor to total dynamic variation has been identified.

Keywords: Low-frequency noise, Random Telegraph Noise, Dynamic Variation, SRRV.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 687
1223 Cost Benefit Analysis: Evaluation among the Millimetre Wavebands and SHF Bands of Small Cell 5G Networks

Authors: Emanuel Teixeira, Anderson Ramos, Marisa Lourenço, Fernando J. Velez, Jon M. Peha

Abstract:

This article discusses the benefit cost analysis aspects of millimetre wavebands (mmWaves) and Super High Frequency (SHF). The devaluation along the distance of the carrier-to-noise-plus-interference ratio with the coverage distance is assessed by considering two different path loss models, the two-slope urban micro Line-of-Sight (UMiLoS) for the SHF band and the modified Friis propagation model, for frequencies above 24 GHz. The equivalent supported throughput is estimated at the 5.62, 28, 38, 60 and 73 GHz frequency bands and the influence of carrier-to-noise-plus-interference ratio in the radio and network optimization process is explored. Mostly owing to the lessening caused by the behaviour of the two-slope propagation model for SHF band, the supported throughput at this band is higher than at the millimetre wavebands only for the longest cell lengths. The benefit cost analysis of these pico-cellular networks was analysed for regular cellular topologies, by considering the unlicensed spectrum. For shortest distances, we can distinguish an optimal of the revenue in percentage terms for values of the cell length, R ≈ 10 m for the millimeter wavebands and for longest distances an optimal of the revenue can be observed at R ≈ 550 m for the 5.62 GHz. It is possible to observe that, for the 5.62 GHz band, the profit is slightly inferior than for millimetre wavebands, for the shortest Rs, and starts to increase for cell lengths approximately equal to the ratio between the break-point distance and the co-channel reuse factor, achieving a maximum for values of R approximately equal to 550 m.

Keywords: 5G, millimetre wavebands, super high-frequency band, SINR, signal-to-interference-plus-noise ratio, cost benefit analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 683
1222 Software Maintenance Severity Prediction with Soft Computing Approach

Authors: E. Ardil, Erdem Uçar, Parvinder S. Sandhu

Abstract:

As the majority of faults are found in a few of its modules so there is a need to investigate the modules that are affected severely as compared to other modules and proper maintenance need to be done on time especially for the critical applications. In this paper, we have explored the different predictor models to NASA-s public domain defect dataset coded in Perl programming language. Different machine learning algorithms belonging to the different learner categories of the WEKA project including Mamdani Based Fuzzy Inference System and Neuro-fuzzy based system have been evaluated for the modeling of maintenance severity or impact of fault severity. The results are recorded in terms of Accuracy, Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE). The results show that Neuro-fuzzy based model provides relatively better prediction accuracy as compared to other models and hence, can be used for the maintenance severity prediction of the software.

Keywords: Software Metrics, Fuzzy, Neuro-Fuzzy, SoftwareFaults, Accuracy, MAE, RMSE.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1559
1221 Aerodynamic Performance of a Pitching Bio-Inspired Corrugated Airfoil

Authors: Hadi Zarafshani, Shidvash Vakilipour, Shahin Teimori, Sara Barati

Abstract:

In the present study, the aerodynamic performance of a rigid two-dimensional pitching bio-inspired corrugate airfoil was numerically investigated at Reynolds number of 14000. The Open Field Operations And Manipulations (OpenFOAM) computational fluid dynamic tool is used to solve flow governing equations numerically. The k-ω SST turbulence model with low Reynolds correction (k-ω SST LRC) and the pimpleDyMFOAM solver are utilized to simulate the flow field around pitching bio-airfoil. The lift and drag coefficients of the airfoil are calculated at reduced frequencies k=1.24-4.96 and the angular amplitude of A=5°-20°. Results show that in a fixed reduced frequency, the absolute value of the sectional lift and drag coefficients increase with increasing pitching amplitude. In a fixed angular amplitude, the absolute value of the lift and drag coefficients increase as the pitching reduced frequency increases.

Keywords: Bio-inspired pitching airfoils, OpenFOAM, low Reynolds k-ω SST model, lift and drag coefficients.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 871
1220 Development of Orbital TIG Welding Robot System for the Pipe

Authors: Dongho Kim, Sung Choi, Kyowoong Pee, Youngsik Cho, Seungwoo Jeong, Soo-Ho Kim

Abstract:

This study is about the orbital TIG welding robot system which travels on the guide rail installed on the pipe, and welds and tracks the pipe seam using the LVS (Laser Vision Sensor) joint profile data. The orbital welding robot system consists of the robot, welder, controller, and LVS. Moreover we can define the relationship between welding travel speed and wire feed speed, and we can make the linear equation using the maximum and minimum amount of weld metal. Using the linear equation we can determine the welding travel speed and the wire feed speed accurately corresponding to the area of weld captured by LVS. We applied this orbital TIG welding robot system to the stainless steel or duplex pipe on DSME (Daewoo Shipbuilding and Marine Engineering Co. Ltd.,) shipyard and the result of radiographic test is almost perfect. (Defect rate: 0.033%).

Keywords: Adaptive welding, automatic welding, Pipe welding, Orbital welding, Laser vision sensor, LVS, welding D/B.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3838
1219 Study of the Effectiveness of Outrigger System for High-Rise Composite Buildings for Cyclonic Region

Authors: S. Fawzia, A. Nasir, T. Fatima

Abstract:

The demands of taller structures are becoming imperative almost everywhere in the world in addition to the challenges of material and labor cost, project time line etc. This paper conducted a study keeping in view the challenging nature of high-rise construction with no generic rules for deflection minimizations and frequency control. The effects of cyclonic wind and provision of outriggers on 28-storey, 42-storey and 57-storey are examined in this paper and certain conclusions are made which would pave way for researchers to conduct further study in this particular area of civil engineering. The results show that plan dimensions have vital impacts on structural heights. Increase of height while keeping the plan dimensions same, leads to the reduction in the lateral rigidity. To achieve required stiffness increase of bracings sizes as well as introduction of additional lateral resisting system such as belt truss and outriggers is required.

Keywords: Cyclonic wind regions, dynamic wind loads, Alongwind effects, Crosswind response, Fundamental frequency of vibration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2910
1218 Design of Static Synchronous Series Compensator Based Damping Controller Employing Real Coded Genetic Algorithm

Authors: S.C.Swain, A.K.Balirsingh, S. Mahapatra, S. Panda

Abstract:

This paper presents a systematic approach for designing Static Synchronous Series Compensator (SSSC) based supplementary damping controllers for damping low frequency oscillations in a single-machine infinite-bus power system. The design problem of the proposed controller is formulated as an optimization problem and RCGA is employed to search for optimal controller parameters. By minimizing the time-domain based objective function, in which the deviation in the oscillatory rotor speed of the generator is involved; stability performance of the system is improved. Simulation results are presented and compared with a conventional method of tuning the damping controller parameters to show the effectiveness and robustness of the proposed design approach.

Keywords: Low frequency Oscillations, Phase CompensationTechnique, Real Coded Genetic Algorithm, Single-machine InfiniteBus Power System, Static Synchronous Series Compensator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2472
1217 Detection of Near Failure Winding due to Deformation in 33/11kV Power Transformer by using Low Voltage Impulse (LVI) Test Method and Validated through Untanking

Authors: R. Samsudin, Yogendra, Hairil Satar, Y.Zaidey

Abstract:

Power transformer consists of components which are under consistent thermal and electrical stresses. The major component which degrades under these stresses is the paper insulation of the power transformer. At site, lightning impulses and cable faults may cause the winding deformation. In addition, the winding may deform due to impact during transportation. A deformed winding will excite more stress to its insulating paper thus will degrade it. Insulation degradation will shorten the life-span of the transformer. Currently there are two methods of detecting the winding deformation which are Sweep Frequency Response Analysis (SFRA) and Low Voltage Impulse Test (LVI). The latter injects current pulses to the winding and capture the admittance plot. In this paper, a transformer which experienced overheating and arcing was identified, and both SFRA and LVI were performed. Next, the transformer was brought to the factory for untanking. The untanking results revealed that the LVI is more accurate than the SFRA method for this case study.

Keywords: Winding Deformation, Arcing, Dissolved GasAnalysis, Sweep Frequency Response Analysis, Low VoltageImpulse Method

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2820
1216 Lower Bound of Time Span Product for a General Class of Signals in Fractional Fourier Domain

Authors: Sukrit Shankar, Chetana Shanta Patsa, Jaydev Sharma

Abstract:

Fractional Fourier Transform is a generalization of the classical Fourier Transform which is often symbolized as the rotation in time- frequency plane. Similar to the product of time and frequency span which provides the Uncertainty Principle for the classical Fourier domain, there has not been till date an Uncertainty Principle for the Fractional Fourier domain for a generalized class of finite energy signals. Though the lower bound for the product of time and Fractional Fourier span is derived for the real signals, a tighter lower bound for a general class of signals is of practical importance, especially for the analysis of signals containing chirps. We hence formulate a mathematical derivation that gives the lower bound of time and Fractional Fourier span product. The relation proves to be utmost importance in taking the Fractional Fourier Transform with adaptive time and Fractional span resolutions for a varied class of complex signals.

Keywords: Fractional Fourier Transform, uncertainty principle, Fractional Fourier Span, amplitude, phase.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1175
1215 Shear-Layer Instabilities of a Pulsed Stack-Issued Transverse Jet

Authors: Ching M. Hsu, Rong F. Huang, Michael E. Loretero

Abstract:

Shear-layer instabilities of a pulsed stack-issued transverse jet were studied experimentally in a wind tunnel. Jet pulsations were induced by means of acoustic excitation. Streak pictures of the smoke-flow patterns illuminated by the laser-light sheet in the median plane were recorded with a high-speed digital camera. Instantaneous velocities of the shear-layer instabilities in the flow were digitized by a hot-wire anemometer. By analyzing the streak pictures of the smoke-flow visualization, three characteristic flow modes, synchronized flapping jet, transition, and synchronized shear-layer vortices, are identified in the shear layer of the pulsed stack-issued transverse jet at various excitation Strouhal numbers. The shear-layer instabilities of the pulsed stack-issued transverse jet are synchronized by acoustic excitation except for transition mode. In transition flow mode, the shear-layer vortices would exhibit a frequency that would be twice as great as the acoustic excitation frequency.

Keywords: Acoustic excitation, jet in crossflow, shear-layer instability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1675
1214 Amplitude and Phase Analysis of EEG Signal by Complex Demodulation

Authors: Sun K. Yoo, Hee Cheol Kang

Abstract:

Analysis of amplitude and phase characteristics for delta, theta, and alpha bands at localized time instant from EEG signals is important for the characterizing information processing in the brain. In this paper, complex demodulation method was used to analyze EEG (Electroencephalographic) signal, particularly for auditory evoked potential response signal, with sufficient time resolution and designated frequency bandwidth resolution required. The complex demodulation decomposes raw EEG signal into 3 designated delta, theta, and alpha bands with complex EEG signal representation at sampled time instant, which can enable the extraction of amplitude envelope and phase information. Throughout simulated test data, and real EEG signal acquired during auditory attention task, it can extract the phase offset, phase and frequency changing instant and decomposed amplitude envelope for delta, theta, and alpha bands. The complex demodulation technique can be efficiently used in brain signal analysis in case of phase, and amplitude information required.

Keywords: EEG, Complex Demodulation, Amplitude, Phase.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4726
1213 School Age and Building Defects: Analysis Using Condition Survey Protocol (CSP) 1 Matrix

Authors: M. Mahli, A.I. Che-Ani, M.Z. Abd-Razak. N.M. Tawil, H. Yahaya

Abstract:

Building condition assessment is a critical activity in Malaysia-s Comprehensive Asset Management Model. It is closely related to building performance that impact user-s life and decision making. This study focuses on public primary school, one of the most valuable assets for the country. The assessment was carried out based on CSP1 Matrix in Kuching Division of Sarawak, Malaysia. Based on the matrix used, three main criteria of the buildings has successfully evaluate: the number of defects; schools rating; and total schools rating. The analysis carried out on 24 schools found that the overall 4, 725 defects has been identified. Meanwhile, the overall score obtained was 45, 868 and the overall rating is 9.71, which is at the fair condition. This result has been associated with building age to evaluate its impacts on school buildings condition. The findings proved that building condition is closely related to building age and its support the theory that 'the ageing building has more defect than the new one'.

Keywords: building condition, CSP1 Matrix, assessment, school, Malaysia

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2214
1212 A Compact Via-less Ultra-Wideband Microstrip Filter by Utilizing Open-Circuit Quarter Wavelength Stubs

Authors: Muhammad Yasir Wadood, Fatemeh Babaeian

Abstract:

By developing ultra-wideband (UWB) systems, there is a high demand for UWB filters with low insertion loss, wide bandwidth, and having a planar structure which is compatible with other components of the UWB system. A microstrip interdigital filter is a great option for designing UWB filters. However, the presence of via holes in this structure creates difficulties in the fabrication procedure of the filter. Especially in the higher frequency band, any misalignment of the drilled via hole with the Microstrip stubs causes large errors in the measurement results compared to the desired results. Moreover, in this case (high-frequency designs), the line width of the stubs are very narrow, so highly precise small via holes are required to be implemented, which increases the cost of fabrication significantly. Also, in this case, there is a risk of having fabrication errors. To combat this issue, in this paper, a via-less UWB microstrip filter is proposed which is designed based on a modification of a conventional inter-digital bandpass filter. The novel approaches in this filter design are 1) replacement of each via hole with a quarter-wavelength open circuit stub to avoid the complexity of manufacturing, 2) using a bend structure to reduce the unwanted coupling effects and 3) minimising the size. Using the proposed structure, a UWB filter operating in the frequency band of 3.9-6.6 GHz (1-dB bandwidth) is designed and fabricated. The promising results of the simulation and measurement are presented in this paper. The selected substrate for these designs was Rogers RO4003 with a thickness of 20 mils. This is a common substrate in most of the industrial projects. The compact size of the proposed filter is highly beneficial for applications which require a very miniature size of hardware.

Keywords: Band-pass filters, inter-digital filter, microstrip, via-less.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 800
1211 Study of the Effect of Rotation on the Deformation of a Flexible Blade Rotor

Authors: Aref Maalej, Marwa Fakhfakh, Wael Ben Amira

Abstract:

We present in this work a numerical investigation of fluid-structure interaction to study the elastic behavior of flexible rotors. The principal aim is to provide the effect of the aero/hydrodynamic parameters on the bending deformation of flexible rotors. This study is accomplished using the strong two-way fluid-structure interaction (FSI) developed by the ANSYS Workbench software. This method is used for coupling the fluid solver to the transient structural solver to study the elastic behavior of flexible rotors in water. In this study, we use a moderately flexible rotor modeled by a single blade with simplified rectangular geometry. In this work, we focus on the effect of the rotational frequency on the flapwise bending deformation. It is demonstrated that the blade deforms in the downstream direction and the amplitude of these deformations increases with the rotational frequencies. Also, from a critical frequency, the blade begins to deform in the upstream direction.

Keywords: Numerical simulation, flexible blade, fluid-structure interaction, ANSYS Workbench, flapwise deformation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 61
1210 Human Walking Vertical Force and Vertical Vibration of Pedestrian Bridge Induced by Its Higher Components

Authors: M. Yoneda

Abstract:

The purpose of this study is to identify human walking vertical force by using FFT power spectrum density from the experimental acceleration data of the human body. An experiment on human walking is carried out on a stationary floor especially paying attention to higher components of dynamic vertical walking force. Based on measured acceleration data of the human lumbar part, not only in-phase component with frequency of 2fw, 3fw, but also in-opposite-phase component with frequency of 0.5 fw, 1.5 fw, 2.5 fw where fw is the walking rate is observed. The vertical vibration of pedestrian bridge induced by higher components of human walking vertical force is also discussed in this paper. A full scale measurement for the existing pedestrian bridge with center span length of 33 m is carried out focusing on the resonance phenomenon due to higher components of human walking vertical force. Dynamic response characteristics excited by these vertical higher components of human walking are revealed from the dynamic design viewpoint of pedestrian bridge.

Keywords: Simplified method, Human walking vertical force, Higher component, Pedestrian bridge vibration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1797
1209 Process Parameters Optimization for Pulsed TIG Welding of 70/30 Cu-Ni Alloy Welds Using Taguchi Technique

Authors: M. P. Chakravarthy, N. Ramanaiah, B. S. K.Sundara Siva Rao

Abstract:

Taguchi approach was applied to determine the most influential control factors which will yield better tensile strength of the joints of pulse TIG welded 70/30 Cu-Ni alloy. In order to evaluate the effect of process parameters such as pulse frequency, peak current, base current and welding speed on tensile strength of Pulsed current TIG welded 70/30 Cu-Ni alloy of 5 mm thickness, Taguchi parametric design and optimization approach was used. Through the Taguchi parametric design approach, the optimum levels of process parameters were determined at 95% confidence level. The results indicate that the Pulse frequency, peak current, welding speed and base current are the significant parameters in deciding the tensile strength of the joint. The predicted optimal values of tensile strength of Pulsed current Gas tungsten arc welding (PC GTAW) of 70/30 Cu-Ni alloy welds are 368.8MPa.

Keywords: 70/30 Cu-Ni alloy, pulsed current GTAW, mechanical properties, Taguchi technique, analysis of variance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3119
1208 Study of Photonic Crystal Band Gap and Hexagonal Microcavity Based on Elliptical Shaped Holes

Authors: A. Benmerkhi, A. Bounouioua, M. Bouchemat, T. Bouchemat

Abstract:

In this paper, we present a numerical optical properties of a triangular periodic lattice of elliptical air holes. We report the influence of the ratio (semi-major axis length of elliptical hole to the filling ratio) on the photonic band gap. Then by using the finite difference time domain (FDTD) algorithm, the resonant wavelength of the point defect microcavities in a two-dimensional photonic crystal (PC) shifts towards the low wavelengths with significantly increased filing ratio. It can be noted that the Q factor is gradually changed to higher when the filling ratio increases. It is due to an increase in reflectivity of the PC mirror. Also we theoretically investigate the H1 cavity, where the value of semi-major axis (Rx) of the six holes surrounding the cavity are fixed at 0.5a and the Rx of the two edge air holes are fixed at the optimum value of 0.52a. The highest Q factor of 4.1359 × 106 is achieved at the resonant mode located at λ = 1.4970 µm.

Keywords: Photonic crystal, microcavity, filling ratio, elliptical holes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 563
1207 Porosities Comparison between Production and Simulation in Motorcycle Fuel Caps of Aluminum High Pressure Die Casting

Authors: P. Meethum, C. Suvanjumrat

Abstract:

Many aluminum motorcycle parts produced by a high pressure die casting. Some parts such as fuel caps were a thin and complex shape. This part risked for porosities and blisters on surface if it only depended on an experience of mold makers for mold design. This research attempted to use CAST-DESIGNER software simulated the high pressure die casting process with the same process parameters of a motorcycle fuel cap production. The simulated results were compared with fuel cap products and expressed the same porosity and blister locations on cap surface. An average of absolute difference of simulated results was obtained 0.094 mm when compared the simulated porosity and blister defect sizes on the fuel cap surfaces with the experimental micro photography. This comparison confirmed an accuracy of software and will use the setting parameters to improve fuel cap molds in the further work.

Keywords: Aluminum, die casting, fuel cap, motorcycle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2550
1206 Housing Defect of Newly Completed House: An Analysis Using Condition Survey Protocol (CSP) 1 Matrix

Authors: I. Ismail, A.I. Che-Ani, N.M. Tawil, H. Yahaya, M.Z. Abd-Razak

Abstract:

Housing is a basic human right. The provision of new house shall be free from any defects, even for the defects that people do normally considered as 'cosmetic defects'. This paper studies about the building defects of newly completed house of 72 unit of double-storey terraced located in Bangi, Selangor. The building survey implemented using protocol 1 (visual inspection). As for new house, the survey work is very stringent in determining the defects condition and priority. Survey and reporting procedure is carried out based on CSP1 Matrix that involved scoring system, photographs and plan tagging. The analysis is done using Statistical Package for Social Sciences (SPSS). The finding reveals that there are 2119 defects recorded in 72 terraced houses. The cumulative score obtained was 27644 while the overall rating is 13.05. These results indicate that the construction quality of the newly terraced houses is low and not up to an acceptable standard as the new house should be.

Keywords: terraced houses, building defects, construction, CSP1 Matrix, Malaysia.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2387
1205 Assessment of Occupational Exposure and Individual Radio-Sensitivity in People Subjected to Ionizing Radiation

Authors: Oksana G. Cherednichenko, Anastasia L. Pilyugina, Sergey N.Lukashenko, Elena G. Gubitskaya

Abstract:

The estimation of accumulated radiation doses in people professionally exposed to ionizing radiation was performed using methods of biological (chromosomal aberrations frequency in lymphocytes) and physical (radionuclides analysis in urine, whole-body radiation meter, individual thermoluminescent dosimeters) dosimetry. A group of 84 "A" category employees after their work in the territory of former Semipalatinsk test site (Kazakhstan) was investigated. The dose rate in some funnels exceeds 40 μSv/h. After radionuclides determination in urine using radiochemical and WBC methods, it was shown that the total effective dose of personnel internal exposure did not exceed 0.2 mSv/year, while an acceptable dose limit for staff is 20 mSv/year. The range of external radiation doses measured with individual thermo-luminescent dosimeters was 0.3-1.406 µSv. The cytogenetic examination showed that chromosomal aberrations frequency in staff was 4.27±0.22%, which is significantly higher than at the people from non-polluting settlement Tausugur (0.87±0.1%) (р ≤ 0.01) and citizens of Almaty (1.6±0.12%) (р≤ 0.01). Chromosomal type aberrations accounted for 2.32±0.16%, 0.27±0.06% of which were dicentrics and centric rings. The cytogenetic analysis of different types group radiosensitivity among «professionals» (age, sex, ethnic group, epidemiological data) revealed no significant differences between the compared values. Using various techniques by frequency of dicentrics and centric rings, the average cumulative radiation dose for group was calculated, and that was 0.084-0.143 Gy. To perform comparative individual dosimetry using physical and biological methods of dose assessment, calibration curves (including own ones) and regression equations based on general frequency of chromosomal aberrations obtained after irradiation of blood samples by gamma-radiation with the dose rate of 0,1 Gy/min were used. Herewith, on the assumption of individual variation of chromosomal aberrations frequency (1–10%), the accumulated dose of radiation varied 0-0.3 Gy. The main problem in the interpretation of individual dosimetry results is reduced to different reaction of the objects to irradiation - radiosensitivity, which dictates the need of quantitative definition of this individual reaction and its consideration in the calculation of the received radiation dose. The entire examined contingent was assigned to a group based on the received dose and detected cytogenetic aberrations. Radiosensitive individuals, at the lowest received dose in a year, showed the highest frequency of chromosomal aberrations (5.72%). In opposite, radioresistant individuals showed the lowest frequency of chromosomal aberrations (2.8%). The cohort correlation according to the criterion of radio-sensitivity in our research was distributed as follows: radio-sensitive (26.2%) — medium radio-sensitivity (57.1%), radioresistant (16.7%). Herewith, the dispersion for radioresistant individuals is 2.3; for the group with medium radio-sensitivity — 3.3; and for radio-sensitive group — 9. These data indicate the highest variation of characteristic (reactions to radiation effect) in the group of radio-sensitive individuals. People with medium radio-sensitivity show significant long-term correlation (0.66; n=48, β ≥ 0.999) between the values of doses defined according to the results of cytogenetic analysis and dose of external radiation obtained with the help of thermoluminescent dosimeters. Mathematical models based on the type of violation of the radiation dose according to the professionals radiosensitivity level were offered.

Keywords: Biodosimetry, chromosomal aberrations, ionizing radiation, radiosensitivity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 910