Search results for: Fault Tree Analysis (FTA)
8588 Memory Leak Detection in Distributed System
Authors: Roohi Shabrin S., Devi Prasad B., Prabu D., Pallavi R. S., Revathi P.
Abstract:
Due to memory leaks, often-valuable system memory gets wasted and denied for other processes thereby affecting the computational performance. If an application-s memory usage exceeds virtual memory size, it can leads to system crash. Current memory leak detection techniques for clusters are reactive and display the memory leak information after the execution of the process (they detect memory leak only after it occur). This paper presents a Dynamic Memory Monitoring Agent (DMMA) technique. DMMA framework is a dynamic memory leak detection, that detects the memory leak while application is in execution phase, when memory leak in any process in the cluster is identified by DMMA it gives information to the end users to enable them to take corrective actions and also DMMA submit the affected process to healthy node in the system. Thus provides reliable service to the user. DMMA maintains information about memory consumption of executing processes and based on this information and critical states, DMMA can improve reliability and efficaciousness of cluster computing.Keywords: Dynamic Memory Monitoring Agent (DMMA), Cluster Computing, Memory Leak, Fault Tolerant Framework, Dynamic Memory Leak Detection (DMLD).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22918587 A Generic and Extensible Spidergon NoC
Authors: Abdelkrim Zitouni, Mounir Zid, Sami Badrouchi, Rached Tourki
Abstract:
The Globally Asynchronous Locally Synchronous Network on Chip (GALS NoC) is the most efficient solution that provides low latency transfers and power efficient System on Chip (SoC) interconnect. This study presents a GALS and generic NoC architecture based on a configurable router. This router integrates a sophisticated dynamic arbiter, the wormhole routing technique and can be configured in a manner that allows it to be used in many possible NoC topologies such as Mesh 2-D, Tree and Polygon architectures. This makes it possible to improve the quality of service (QoS) required by the proposed NoC. A comparative performances study of the proposed NoC architecture, Tore architecture and of the most used Mesh 2D architecture is performed. This study shows that Spidergon architecture is characterised by the lower latency and the later saturation. It is also shown that no matter what the number of used links is raised; the Links×Diameter product permitted by the Spidergon architecture remains always the lower. The only limitation of this architecture comes from it-s over cost in term of silicon area.
Keywords: Dynamic arbiter, Generic router, Spidergon NoC, SoC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15758586 Systematic Functional Analysis Methods for Design Retrieval and Documentation
Authors: L. Zehtaban, D. Roller
Abstract:
Apart from geometry, functionality is one of the most significant hallmarks of a product. The functionality of a product can be considered as the fundamental justification for a product existence. Therefore a functional analysis including a complete and reliable descriptor has a high potential to improve product development process in various fields especially in knowledge-based design. One of the important applications of the functional analysis and indexing is in retrieval and design reuse concept. More than 75% of design activity for a new product development contains reusing earlier and existing design know-how. Thus, analysis and categorization of product functions concluded by functional indexing, influences directly in design optimization. This paper elucidates and evaluates major classes for functional analysis by discussing their major methods. Moreover it is finalized by presenting a noble hybrid approach for functional analysis.Keywords: Functional analysis, design reuse, functionalindexing and representation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 51878585 Technique for Grounding System Design in Distribution Substation
Authors: N. Rugthaicharoencheep, A. Charlangsut, B. Ainsuk, A. Phayomhom
Abstract:
This paper presents the significant factor and give some suggestion that should know before design. The main objective of this paper is guide the first step for someone who attends to design of grounding system before study in details later. The overview of grounding system can protect damage from fault such as can save a human life and power system equipment. The unsafe conditions have three cases. Case 1) maximum touch voltage exceeds the safety criteria. In this case, the conductor compression ratio of the ground gird should be first adjusted to have optimal spacing of ground grid conductors. If it still over limit, earth resistivity should be consider afterward. Case 2) maximum step voltage exceeds the safety criteria. In this case, increasing the number of ground grid conductors around the boundary can solve this problem. Case 3) both of maximum touch and step voltage exceed the safety criteria. In this case, follow the solutions explained in case 1 and case 2. Another suggestion, vary depth of ground grid until maximum step and touch voltage do not exceed the safety criteria.Keywords: Grounding System, Touch Voltage, Step Voltage, Safety Criteria.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35388584 Finger Vein Recognition using PCA-based Methods
Authors: Sepehr Damavandinejadmonfared, Ali Khalili Mobarakeh, Mohsen Pashna, , Jiangping Gou Sayedmehran Mirsafaie Rizi, Saba Nazari, Shadi Mahmoodi Khaniabadi, Mohamad Ali Bagheri
Abstract:
In this paper a novel algorithm is proposed to merit the accuracy of finger vein recognition. The performances of Principal Component Analysis (PCA), Kernel Principal Component Analysis (KPCA), and Kernel Entropy Component Analysis (KECA) in this algorithm are validated and compared with each other in order to determine which one is the most appropriate one in terms of finger vein recognition.Keywords: Biometrics, finger vein recognition, PrincipalComponent Analysis (PCA), Kernel Principal Component Analysis(KPCA), Kernel Entropy Component Analysis (KPCA).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26938583 Comparative Evaluation of Adaptive and Conventional Distance Relay for Parallel Transmission Line with Mutual Coupling
Authors: S.G. Srivani, Chandrasekhar Reddy Atla, K.P.Vittal
Abstract:
This paper presents the development of adaptive distance relay for protection of parallel transmission line with mutual coupling. The proposed adaptive relay, automatically adjusts its operation based on the acquisition of the data from distance relay of adjacent line and status of adjacent line from line circuit breaker IED (Intelligent Electronic Device). The zero sequence current of the adjacent parallel transmission line is used to compute zero sequence current ratio and the mutual coupling effect is fully compensated. The relay adapts to changing circumstances, like failure in communication from other relays and non - availability of adjacent transmission line. The performance of the proposed adaptive relay is tested using steady state and dynamic test procedures. The fault transients are obtained by simulating a realistic parallel transmission line system with mutual coupling effect in PSCAD. The evaluation test results show the efficacy of adaptive distance relay over the conventional distance relay.Keywords: Adaptive relaying, distance measurement, mutualcoupling, quadrilateral trip characteristic, zones of protection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31538582 Cloudburst-Triggered Natural Hazards in Uttarakhand Himalaya: Mechanism, Prevention, and Mitigation
Authors: Vishwambhar Prasad Sati
Abstract:
This article examines cloudburst-triggered natural hazards mainly flashfloods and landslides in the Uttarakhand Himalaya. It further describes mechanism and implications of natural hazards and illustrates the preventive and mitigation measures. We conducted this study through collection of archival data, case study of cloudburst hit areas, and rapid field visit of the affected regions. In the second week of August 2017, about 50 people died and huge losses to property were noticed due to cloudburst-triggered flashfloods. Our study shows that although cloudburst triggered hazards in the Uttarakhand Himalaya are natural phenomena and unavoidable yet, disasters can be minimized if preventive measures are taken up appropriately. We suggested that construction of human settlements, institutions and infrastructural facilities along the seasonal streams and the perennial rivers should be avoided to prevent disasters. Further, large-scale tree plantation on the degraded land will reduce the magnitude of hazards.
Keywords: Cloudburst, flashfloods, landslides, fragile landscape, Uttarakhand Himalaya.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13318581 Statistical Texture Analysis
Authors: G. N. Srinivasan, G. Shobha
Abstract:
This paper presents an overview of the methodologies and algorithms for statistical texture analysis of 2D images. Methods for digital-image texture analysis are reviewed based on available literature and research work either carried out or supervised by the authors.Keywords: Image Texture, Texture Analysis, Statistical Approaches, Structural approaches, spectral approaches, Morphological approaches, Fractals, Fourier Transforms, Gabor Filters, Wavelet transforms.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9588580 The Documentary Analysis of Meta-Analysis Research in Violence of Media
Authors: Proud Arunrangsiwed
Abstract:
The part of “future direction” in the findings of meta-analysis could provide the great direction to conduct the future studies. This study, “The Documentary Analysis of Meta-Analysis Research in Violence of Media” would conclude “future directions” out of 10 meta-analysis papers. The purposes of this research are to find an appropriate research design or an appropriate methodology for the future research related to the topic, “violence of media”. Further research needs to explore by longitudinal and experimental design, and also needs to have a careful consideration about age effects, time spent effects, enjoyment effects and ordinary lifestyle of each media consumer.
Keywords: Aggressive, future direction, meta-analysis, media, violence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27118579 Lagrange-s Inversion Theorem and Infiltration
Authors: Pushpa N. Rathie, Prabhata K. Swamee, André L. B. Cavalcante, Luan Carlos de S. M. Ozelim
Abstract:
Implicit equations play a crucial role in Engineering. Based on this importance, several techniques have been applied to solve this particular class of equations. When it comes to practical applications, in general, iterative procedures are taken into account. On the other hand, with the improvement of computers, other numerical methods have been developed to provide a more straightforward methodology of solution. Analytical exact approaches seem to have been continuously neglected due to the difficulty inherent in their application; notwithstanding, they are indispensable to validate numerical routines. Lagrange-s Inversion Theorem is a simple mathematical tool which has proved to be widely applicable to engineering problems. In short, it provides the solution to implicit equations by means of an infinite series. To show the validity of this method, the tree-parameter infiltration equation is, for the first time, analytically and exactly solved. After manipulating these series, closed-form solutions are presented as H-functions.Keywords: Green-Ampt Equation, Lagrange's Inversion Theorem, Talsma-Parlange Equation, Three-Parameter Infiltration Equation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18948578 Fiber Microstructure in Solanum Found in Thailand
Authors: Aree Thongpukdee, Chockpisit Thepsithar, Sujitra Timchookul
Abstract:
The study aimed to investigate characteristics of vegetative tissue for taxonomic purpose and possibly trend of waste application in industry. Stems and branches of 15 species in Solanum found in Thailand were prepared for fiber and examined by light microscopy. Microstructural characteristic data of fiber i.e. fiber length and width, fiber lumen diameter and fiber cell wall thickness were recorded. The longest average fiber cell length (>3.9 mm.) were obtained in S. lycopersicum L. and S. tuberosum L. Fiber cells from S. lycopersicum also revealed the widest average diameter of whole cell and its lumen at >45.5 μm and >29 μm respectively. However fiber cells with thickest wall of > 9.6 μm were belonged to the ornamental tree species, S. wrightii Benth. The results showed that the slenderness ratio, Runkel ratio, and flexibility coefficient, with potentially suitable for feedstock in paper industry fell in 4 exotic species, i.e. Solanumamericanum L., S. lycopersicum, S. seaforthianum Andr., and S. tuberosum L
Keywords: Fiber, microstructure, Solanaceae, Solanum.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16688577 Proposal for a Ultra Low Voltage NAND gate to withstand Power Analysis Attacks
Authors: Omid Mirmotahari, Yngvar Berg
Abstract:
In this paper we promote the Ultra Low Voltage (ULV) NAND gate to replace either partly or entirely the encryption block of a design to withstand power analysis attack.
Keywords: Differential Power Analysis (DPA), Low Voltage (LV), Ultra Low Voltage (ULV), Floating-Gate (FG), supply current analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19618576 Design and Performance Evaluation of Hybrid Corrugated-GFRP Infill Panels
Authors: WooYoung Jung, HoYoung Son
Abstract:
This study presented to reduce earthquake damage and emergency rehabilitation of critical structures such as schools, hightech factories, and hospitals due to strong ground motions associated with climate changes. Regarding recent trend, a strong earthquake causes serious damage to critical structures and then the critical structure might be influenced by sequence aftershocks (or tsunami) due to fault plane adjustments. Therefore, in order to improve seismic performance of critical structures, retrofitted or strengthening study of the structures under aftershocks sequence after emergency rehabilitation of the structures subjected to strong earthquakes is widely carried out. Consequently, this study used composite material for emergency rehabilitation of the structure rather than concrete and steel materials because of high strength and stiffness, lightweight, rapid manufacturing, and dynamic performance. Also, this study was to develop or improve the seismic performance or seismic retrofit of critical structures subjected to strong ground motions and earthquake aftershocks, by utilizing GFRP-Corrugated Infill Panels (GCIP).Keywords: Composite material, GFRP, Infill Panel, Aftershock, Seismic Retrofitting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22928575 A Detailed Timber Harvest Simulator Coupled with 3-D Visualization
Authors: Jürgen Roßmann, Gerrit Alves
Abstract:
In today-s world, the efficient utilization of wood resources comes more and more to the mind of forest owners. It is a very complex challenge to ensure an efficient harvest of the wood resources. This is one of the scopes the project “Virtual Forest II" addresses. Its core is a database with data about forests containing approximately 260 million trees located in North Rhine-Westphalia (NRW). Based on this data, tree growth simulations and wood mobilization simulations can be conducted. This paper focuses on the latter. It describes a discrete-event-simulation with an attached 3-D real time visualization which simulates timber harvest using trees from the database with different crop resources. This simulation can be displayed in 3-D to show the progress of the wood crop. All the data gathered during the simulation is presented as a detailed summary afterwards. This summary includes cost-benefit calculations and can be compared to those of previous runs to optimize the financial outcome of the timber harvest by exchanging crop resources or modifying their parameters.Keywords: Timber harvest, simulation, 3-D, optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13868574 A Survey of the Applications of Sentiment Analysis
Authors: Pingping Lin, Xudong Luo
Abstract:
Natural language often conveys emotions of speakers. Therefore, sentiment analysis on what people say is prevalent in the field of natural language process and has great application value in many practical problems. Thus, to help people understand its application value, in this paper, we survey various applications of sentiment analysis, including the ones in online business and offline business as well as other types of its applications. In particular, we give some application examples in intelligent customer service systems in China. Besides, we compare the applications of sentiment analysis on Twitter, Weibo, Taobao and Facebook, and discuss some challenges. Finally, we point out the challenges faced in the applications of sentiment analysis and the work that is worth being studied in the future.Keywords: Natural language processing, sentiment analysis, application, online comments.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9648573 Fine-Grained Sentiment Analysis: Recent Progress
Authors: Jie Liu, Xudong Luo, Pingping Lin, Yifan Fan
Abstract:
Facebook, Twitter, Weibo, and other social media and significant e-commerce sites generate a massive amount of online texts, which can be used to analyse people’s opinions or sentiments for better decision-making. So, sentiment analysis, especially the fine-grained sentiment analysis, is a very active research topic. In this paper, we survey various methods for fine-grained sentiment analysis, including traditional sentiment lexicon-based methods, ma-chine learning-based methods, and deep learning-based methods in aspect/target/attribute-based sentiment analysis tasks. Besides, we discuss their advantages and problems worthy of careful studies in the future.
Keywords: sentiment analysis, fine-grained, machine learning, deep learning
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24358572 Multicast Optimization Techniques using Best Effort Genetic Algorithms
Authors: Dinesh Kumar, Y. S. Brar, V. K. Banga
Abstract:
Multicast Network Technology has pervaded our lives-a few examples of the Networking Techniques and also for the improvement of various routing devices we use. As we know the Multicast Data is a technology offers many applications to the user such as high speed voice, high speed data services, which is presently dominated by the Normal networking and the cable system and digital subscriber line (DSL) technologies. Advantages of Multi cast Broadcast such as over other routing techniques. Usually QoS (Quality of Service) Guarantees are required in most of Multicast applications. The bandwidth-delay constrained optimization and we use a multi objective model and routing approach based on genetic algorithm that optimizes multiple QoS parameters simultaneously. The proposed approach is non-dominated routes and the performance with high efficiency of GA. Its betterment and high optimization has been verified. We have also introduced and correlate the result of multicast GA with the Broadband wireless to minimize the delay in the path.Keywords: GA (genetic Algorithms), Quality of Service, MOGA, Steiner Tree.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15618571 Simultaneous Tuning of Static Var Compensator and Power System Stabilizer Employing Real- Coded Genetic Algorithm
Authors: S. Panda, N. P. Patidar, R. Singh
Abstract:
Power system stability enhancement by simultaneous tuning of a Power System Stabilizer (PSS) and a Static Var Compensator (SVC)-based controller is thoroughly investigated in this paper. The coordination among the proposed damping stabilizers and the SVC internal voltage regulators has also been taken into consideration. The design problem is formulated as an optimization problem with a time-domain simulation-based objective function and Real-Coded Genetic Algorithm (RCGA) is employed to search for optimal controller parameters. The proposed stabilizers are tested on a weakly connected power system with different disturbances and loading conditions. The nonlinear simulation results are presented to show the effectiveness and robustness of the proposed control schemes over a wide range of loading conditions and disturbances. Further, the proposed design approach is found to be robust and improves stability effectively even under small disturbance and unbalanced fault conditions.
Keywords: Real-Coded Genetic Algorithm (RCGA), Static Var Compensator (SVC), Power System Stabilizer (PSS), Low Frequency Oscillations, Power System Stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22628570 Application of Genetic Algorithm for FACTS-based Controller Design
Authors: Sidhartha Panda, N. P. Padhy, R.N.Patel
Abstract:
In this paper, genetic algorithm (GA) opmization technique is applied to design Flexible AC Transmission System (FACTS)-based damping controllers. Two types of controller structures, namely a proportional-integral (PI) and a lead-lag (LL) are considered. The design problem of the proposed controllers is formulated as an optimization problem and GA is employed to search for optimal controller parameters. By minimizing the time-domain based objective function, in which the deviation in the oscillatory rotor speed of the generator is involved; stability performance of the system is improved. The proposed controllers are tested on a weakly connected power system subjected to different disturbances. The non-linear simulation results are presented to show the effectiveness of the proposed controller and their ability to provide efficient damping of low frequency oscillations. It is also observed that the proposed SSSC-based controllers improve greatly the voltage profile of the system under severe disturbances. Further, the dynamic performances of both the PI and LL structured FACTS-controller are analyzed at different loading conditions and under various disturbance condition as well as under unbalanced fault conditions..
Keywords: Genetic algorithm, proportional-integral controller, lead-lag controller, power system stability, FACTS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25518569 Method of Intelligent Fault Diagnosis of Preload Loss for Single Nut Ball Screws through the Sensed Vibration Signals
Authors: Yi-Cheng Huang, Yan-Chen Shin
Abstract:
This paper proposes method of diagnosing ball screw preload loss through the Hilbert-Huang Transform (HHT) and Multiscale entropy (MSE) process. The proposed method can diagnose ball screw preload loss through vibration signals when the machine tool is in operation. Maximum dynamic preload of 2 %, 4 %, and 6 % ball screws were predesigned, manufactured, and tested experimentally. Signal patterns are discussed and revealed using Empirical Mode Decomposition(EMD)with the Hilbert Spectrum. Different preload features are extracted and discriminated using HHT. The irregularity development of a ball screw with preload loss is determined and abstracted using MSE based on complexity perception. Experiment results show that the proposed method can predict the status of ball screw preload loss. Smart sensing for the health of the ball screw is also possible based on a comparative evaluation of MSE by the signal processing and pattern matching of EMD/HHT. This diagnosis method realizes the purposes of prognostic effectiveness on knowing the preload loss and utilizing convenience.Keywords: Empirical Mode Decomposition, Hilbert-Huang Transform, Multi-scale Entropy, Preload Loss, Single-nut Ball Screw
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28508568 Implementing an Intuitive Reasoner with a Large Weather Database
Authors: Yung-Chien Sun, O. Grant Clark
Abstract:
In this paper, the implementation of a rule-based intuitive reasoner is presented. The implementation included two parts: the rule induction module and the intuitive reasoner. A large weather database was acquired as the data source. Twelve weather variables from those data were chosen as the “target variables" whose values were predicted by the intuitive reasoner. A “complex" situation was simulated by making only subsets of the data available to the rule induction module. As a result, the rules induced were based on incomplete information with variable levels of certainty. The certainty level was modeled by a metric called "Strength of Belief", which was assigned to each rule or datum as ancillary information about the confidence in its accuracy. Two techniques were employed to induce rules from the data subsets: decision tree and multi-polynomial regression, respectively for the discrete and the continuous type of target variables. The intuitive reasoner was tested for its ability to use the induced rules to predict the classes of the discrete target variables and the values of the continuous target variables. The intuitive reasoner implemented two types of reasoning: fast and broad where, by analogy to human thought, the former corresponds to fast decision making and the latter to deeper contemplation. . For reference, a weather data analysis approach which had been applied on similar tasks was adopted to analyze the complete database and create predictive models for the same 12 target variables. The values predicted by the intuitive reasoner and the reference approach were compared with actual data. The intuitive reasoner reached near-100% accuracy for two continuous target variables. For the discrete target variables, the intuitive reasoner predicted at least 70% as accurately as the reference reasoner. Since the intuitive reasoner operated on rules derived from only about 10% of the total data, it demonstrated the potential advantages in dealing with sparse data sets as compared with conventional methods.Keywords: Artificial intelligence, intuition, knowledge acquisition, limited certainty.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13888567 A Survey of Sentiment Analysis Based on Deep Learning
Authors: Pingping Lin, Xudong Luo, Yifan Fan
Abstract:
Sentiment analysis is a very active research topic. Every day, Facebook, Twitter, Weibo, and other social media, as well as significant e-commerce websites, generate a massive amount of comments, which can be used to analyse peoples opinions or emotions. The existing methods for sentiment analysis are based mainly on sentiment dictionaries, machine learning, and deep learning. The first two kinds of methods rely on heavily sentiment dictionaries or large amounts of labelled data. The third one overcomes these two problems. So, in this paper, we focus on the third one. Specifically, we survey various sentiment analysis methods based on convolutional neural network, recurrent neural network, long short-term memory, deep neural network, deep belief network, and memory network. We compare their futures, advantages, and disadvantages. Also, we point out the main problems of these methods, which may be worthy of careful studies in the future. Finally, we also examine the application of deep learning in multimodal sentiment analysis and aspect-level sentiment analysis.Keywords: Natural language processing, sentiment analysis, document analysis, multimodal sentiment analysis, deep learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20268566 Improving the Voltage Level in High Voltage Direct Current Systems by Using Modular Multilevel Converter
Authors: G. Kishor Babu, B. Madhu Kiran
Abstract:
This paper presented an intend scheme of Modular-Multilevel-Converter (MMC) levels for move towering the practical conciliation flanked by the precision and divisional competence. The whole process is standard by a Thevenin-equivalent 133-level MMC model. Firstly the computation scheme of the fundamental limit imitation time step is offered to faithfully represent each voltage level of waveforms. Secondly the earlier industrial Improved Analytic Hierarchy Process (IAHP) is adopted to integrate the relative errors of all the input electrical factors interested in one complete virtual fault on each converter level. Thirdly the stable AC and DC ephemeral condition in virtual faults effects of all the forms stabilize and curve integral stand on the standard form. Finally the optimal MMC level will be obtained by the drown curves and it will give individual weights allowing for the precision and efficiency. And the competence and potency of the scheme are validated by model on MATLAB Simulink.
Keywords: Modular multilevel converter, improved analytic hierarchy process, ac and dc transient, high voltage direct current, voltage sourced converter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6098565 Observations about the Principal Components Analysis and Data Clustering Techniques in the Study of Medical Data
Authors: Cristina G. Dascâlu, Corina Dima Cozma, Elena Carmen Cotrutz
Abstract:
The medical data statistical analysis often requires the using of some special techniques, because of the particularities of these data. The principal components analysis and the data clustering are two statistical methods for data mining very useful in the medical field, the first one as a method to decrease the number of studied parameters, and the second one as a method to analyze the connections between diagnosis and the data about the patient-s condition. In this paper we investigate the implications obtained from a specific data analysis technique: the data clustering preceded by a selection of the most relevant parameters, made using the principal components analysis. Our assumption was that, using the principal components analysis before data clustering - in order to select and to classify only the most relevant parameters – the accuracy of clustering is improved, but the practical results showed the opposite fact: the clustering accuracy decreases, with a percentage approximately equal with the percentage of information loss reported by the principal components analysis.Keywords: Data clustering, medical data, principal components analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15108564 Music-Inspired Harmony Search Algorithm for Fixed Outline Non-Slicing VLSI Floorplanning
Authors: K. Sivasubramanian, K. B. Jayanthi
Abstract:
Floorplanning plays a vital role in the physical design process of Very Large Scale Integrated (VLSI) chips. It is an essential design step to estimate the chip area prior to the optimized placement of digital blocks and their interconnections. Since VLSI floorplanning is an NP-hard problem, many optimization techniques were adopted in the literature. In this work, a music-inspired Harmony Search (HS) algorithm is used for the fixed die outline constrained floorplanning, with the aim of reducing the total chip area. HS draws inspiration from the musical improvisation process of searching for a perfect state of harmony. Initially, B*-tree is used to generate the primary floorplan for the given rectangular hard modules and then HS algorithm is applied to obtain an optimal solution for the efficient floorplan. The experimental results of the HS algorithm are obtained for the MCNC benchmark circuits.Keywords: Floor planning, harmony search, non-slicing floorplan, very large scale integrated circuits.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19628563 An Auxiliary Technique for Coronary Heart Disease Prediction by Analyzing ECG Based on ResNet and Bi-LSTM
Authors: Yang Zhang, Jian He
Abstract:
Heart disease is one of the leading causes of death in the world, and coronary heart disease (CHD) is one of the major heart diseases. Electrocardiogram (ECG) is widely used in the detection of heart diseases, but the traditional manual method for CHD prediction by analyzing ECG requires lots of professional knowledge for doctors. This paper presents sliding window and continuous wavelet transform (CWT) to transform ECG signals into images, and then ResNet and Bi-LSTM are introduced to build the ECG feature extraction network (namely ECGNet). At last, an auxiliary system for CHD prediction was developed based on modified ResNet18 and Bi-LSTM, and the public ECG dataset of CHD from MIMIC-3 was used to train and test the system. The experimental results show that the accuracy of the method is 83%, and the F1-score is 83%. Compared with the available methods for CHD prediction based on ECG, such as kNN, decision tree, VGGNet, etc., this method not only improves the prediction accuracy but also could avoid the degradation phenomenon of the deep learning network.
Keywords: Bi-LSTM, CHD, coronary heart disease, ECG, electrocardiogram, ResNet, sliding window.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3548562 Use of Visualization Techniques for Active Learning Engagement in Environmental Science Engineering Courses
Authors: Srinivasan Latha, M. R. Christhu Raj, Rajeev Sukumaran
Abstract:
Active learning strategies have completely rewritten the concept of teaching and learning. Academicians have clocked back to Socratic approaches of questioning. Educators have started implementing active learning strategies for effective learning with the help of tools and technology. As Generation-Y learners are mostly visual, engaging them using visualization techniques play a vital role in their learning process. The facilitator has an important role in intrinsically motivating the learners using different approaches to create self-learning interests. Different visualization techniques were used along with lectures to help students understand and appreciate the concepts. Anonymous feedback was collected from learners. The consolidated report shows that majority of learners accepted the usage of visualization techniques was helpful in understanding concepts as well as create interest in learning the course. This study helps to understand, how the use of visualization techniques help the facilitator to engage learners effectively as well create and intrinsic motivation for their learning.
Keywords: Visualization techniques, concept maps, mind maps, argument maps, flowchart, tree diagram, problem solving.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19208561 Searchable Encryption in Cloud Storage
Authors: Ren-Junn Hwang, Chung-Chien Lu, Jain-Shing Wu
Abstract:
Cloud outsource storage is one of important services in cloud computing. Cloud users upload data to cloud servers to reduce the cost of managing data and maintaining hardware and software. To ensure data confidentiality, users can encrypt their files before uploading them to a cloud system. However, retrieving the target file from the encrypted files exactly is difficult for cloud server. This study proposes a protocol for performing multikeyword searches for encrypted cloud data by applying k-nearest neighbor technology. The protocol ranks the relevance scores of encrypted files and keywords, and prevents cloud servers from learning search keywords submitted by a cloud user. To reduce the costs of file transfer communication, the cloud server returns encrypted files in order of relevance. Moreover, when a cloud user inputs an incorrect keyword and the number of wrong alphabet does not exceed a given threshold; the user still can retrieve the target files from cloud server. In addition, the proposed scheme satisfies security requirements for outsourced data storage.
Keywords: Fault-tolerance search, multi-keywords search, outsource storage, ranked search, searchable encryption.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30888560 One-Class Support Vector Machine for Sentiment Analysis of Movie Review Documents
Authors: Chothmal, Basant Agarwal
Abstract:
Sentiment analysis means to classify a given review document into positive or negative polar document. Sentiment analysis research has been increased tremendously in recent times due to its large number of applications in the industry and academia. Sentiment analysis models can be used to determine the opinion of the user towards any entity or product. E-commerce companies can use sentiment analysis model to improve their products on the basis of users’ opinion. In this paper, we propose a new One-class Support Vector Machine (One-class SVM) based sentiment analysis model for movie review documents. In the proposed approach, we initially extract features from one class of documents, and further test the given documents with the one-class SVM model if a given new test document lies in the model or it is an outlier. Experimental results show the effectiveness of the proposed sentiment analysis model.Keywords: Feature selection methods, Machine learning, NB, One-class SVM, Sentiment Analysis, Support Vector Machine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33108559 A Grey-Fuzzy Controller for Optimization Technique in Wireless Networks
Authors: Yao-Tien Wang, Hsiang-Fu Yu, Dung Chen Chiou
Abstract:
In wireless and mobile communications, this progress provides opportunities for introducing new standards and improving existing services. Supporting multimedia traffic with wireless networks quality of service (QoS). In this paper, a grey-fuzzy controller for radio resource management (GF-RRM) is presented to maximize the number of the served calls and QoS provision in wireless networks. In a wireless network, the call arrival rate, the call duration and the communication overhead between the base stations and the control center are vague and uncertain. In this paper, we develop a method to predict the cell load and to solve the RRM problem based on the GF-RRM, and support the present facility has been built on the application-level of the wireless networks. The GF-RRM exhibits the better adaptability, fault-tolerant capability and performance than other algorithms. Through simulations, we evaluate the blocking rate, update overhead, and channel acquisition delay time of the proposed method. The results demonstrate our algorithm has the lower blocking rate, less updated overhead, and shorter channel acquisition delay.Keywords: radio resource management, grey prediction, fuzzylogic control, wireless networks, quality of service.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1722