WASET
	@article{(Open Science Index):https://publications.waset.org/pdf/7256,
	  title     = {Implementing an Intuitive Reasoner with a Large Weather Database},
	  author    = {Yung-Chien Sun and  O. Grant Clark},
	  country	= {},
	  institution	= {},
	  abstract     = {In this paper, the implementation of a rule-based
intuitive reasoner is presented. The implementation included two
parts: the rule induction module and the intuitive reasoner. A large
weather database was acquired as the data source. Twelve weather
variables from those data were chosen as the “target variables"
whose values were predicted by the intuitive reasoner. A “complex"
situation was simulated by making only subsets of the data available
to the rule induction module. As a result, the rules induced were
based on incomplete information with variable levels of certainty.
The certainty level was modeled by a metric called "Strength of
Belief", which was assigned to each rule or datum as ancillary
information about the confidence in its accuracy. Two techniques
were employed to induce rules from the data subsets: decision tree
and multi-polynomial regression, respectively for the discrete and the
continuous type of target variables. The intuitive reasoner was tested
for its ability to use the induced rules to predict the classes of the
discrete target variables and the values of the continuous target
variables. The intuitive reasoner implemented two types of
reasoning: fast and broad where, by analogy to human thought, the
former corresponds to fast decision making and the latter to deeper
contemplation. . For reference, a weather data analysis approach
which had been applied on similar tasks was adopted to analyze the
complete database and create predictive models for the same 12
target variables. The values predicted by the intuitive reasoner and
the reference approach were compared with actual data. The intuitive
reasoner reached near-100% accuracy for two continuous target
variables. For the discrete target variables, the intuitive reasoner
predicted at least 70% as accurately as the reference reasoner. Since
the intuitive reasoner operated on rules derived from only about 10%
of the total data, it demonstrated the potential advantages in dealing
with sparse data sets as compared with conventional methods.},
	    journal   = {International Journal of Environmental and Ecological Engineering},
	  volume    = {3},
	  number    = {2},
	  year      = {2009},
	  pages     = {21 - 38},
	  ee        = {https://publications.waset.org/pdf/7256},
	  url   	= {https://publications.waset.org/vol/26},
	  bibsource = {https://publications.waset.org/},
	  issn  	= {eISSN: 1307-6892},
	  publisher = {World Academy of Science, Engineering and Technology},
	  index 	= {Open Science Index 26, 2009},
	}