Search results for: medical data
7813 Automatic Real-Patient Medical Data De-Identification for Research Purposes
Authors: Petr Vcelak, Jana Kleckova
Abstract:
Our Medicine-oriented research is based on a medical data set of real patients. It is a security problem to share patient private data with peoples other than clinician or hospital staff. We have to remove person identification information from medical data. The medical data without private data are available after a de-identification process for any research purposes. In this paper, we introduce an universal automatic rule-based de-identification application to do all this stuff on an heterogeneous medical data. A patient private identification is replaced by an unique identification number, even in burnedin annotation in pixel data. The identical identification is used for all patient medical data, so it keeps relationships in a data. Hospital can take an advantage of a research feedback based on results.Keywords: DASTA, De-identification, DICOM, Health Level Seven, Medical data, OCR, Personal data
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16257812 Analysis of Medical Data using Data Mining and Formal Concept Analysis
Authors: Anamika Gupta, Naveen Kumar, Vasudha Bhatnagar
Abstract:
This paper focuses on analyzing medical diagnostic data using classification rules in data mining and context reduction in formal concept analysis. It helps in finding redundancies among the various medical examination tests used in diagnosis of a disease. Classification rules have been derived from positive and negative association rules using the Concept lattice structure of the Formal Concept Analysis. Context reduction technique given in Formal Concept Analysis along with classification rules has been used to find redundancies among the various medical examination tests. Also it finds out whether expensive medical tests can be replaced by some cheaper tests.
Keywords: Data Mining, Formal Concept Analysis, Medical Data, Negative Classification Rules.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17257811 Observations about the Principal Components Analysis and Data Clustering Techniques in the Study of Medical Data
Authors: Cristina G. Dascâlu, Corina Dima Cozma, Elena Carmen Cotrutz
Abstract:
The medical data statistical analysis often requires the using of some special techniques, because of the particularities of these data. The principal components analysis and the data clustering are two statistical methods for data mining very useful in the medical field, the first one as a method to decrease the number of studied parameters, and the second one as a method to analyze the connections between diagnosis and the data about the patient-s condition. In this paper we investigate the implications obtained from a specific data analysis technique: the data clustering preceded by a selection of the most relevant parameters, made using the principal components analysis. Our assumption was that, using the principal components analysis before data clustering - in order to select and to classify only the most relevant parameters – the accuracy of clustering is improved, but the practical results showed the opposite fact: the clustering accuracy decreases, with a percentage approximately equal with the percentage of information loss reported by the principal components analysis.Keywords: Data clustering, medical data, principal components analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14907810 A Hybrid Data Mining Method for the Medical Classification of Chest Pain
Authors: Sung Ho Ha, Seong Hyeon Joo
Abstract:
Data mining techniques have been used in medical research for many years and have been known to be effective. In order to solve such problems as long-waiting time, congestion, and delayed patient care, faced by emergency departments, this study concentrates on building a hybrid methodology, combining data mining techniques such as association rules and classification trees. The methodology is applied to real-world emergency data collected from a hospital and is evaluated by comparing with other techniques. The methodology is expected to help physicians to make a faster and more accurate classification of chest pain diseases.Keywords: Data mining, medical decisions, medical domainknowledge, chest pain.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22107809 Soft Computing based Retrieval System for Medical Applications
Authors: Pardeep Singh, Sanjay Sharma
Abstract:
With increasing data in medical databases, medical data retrieval is growing in popularity. Some of this analysis including inducing propositional rules from databases using many soft techniques, and then using these rules in an expert system. Diagnostic rules and information on features are extracted from clinical databases on diseases of congenital anomaly. This paper explain the latest soft computing techniques and some of the adaptive techniques encompasses an extensive group of methods that have been applied in the medical domain and that are used for the discovery of data dependencies, importance of features, patterns in sample data, and feature space dimensionality reduction. These approaches pave the way for new and interesting avenues of research in medical imaging and represent an important challenge for researchers.Keywords: CBIR, GA, Rough sets, CBMIR, SVM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17227808 Statistical Analysis for Overdispersed Medical Count Data
Authors: Y. N. Phang, E. F. Loh
Abstract:
Many researchers have suggested the use of zero inflated Poisson (ZIP) and zero inflated negative binomial (ZINB) models in modeling overdispersed medical count data with extra variations caused by extra zeros and unobserved heterogeneity. The studies indicate that ZIP and ZINB always provide better fit than using the normal Poisson and negative binomial models in modeling overdispersed medical count data. In this study, we proposed the use of Zero Inflated Inverse Trinomial (ZIIT), Zero Inflated Poisson Inverse Gaussian (ZIPIG) and zero inflated strict arcsine models in modeling overdispered medical count data. These proposed models are not widely used by many researchers especially in the medical field. The results show that these three suggested models can serve as alternative models in modeling overdispersed medical count data. This is supported by the application of these suggested models to a real life medical data set. Inverse trinomial, Poisson inverse Gaussian and strict arcsine are discrete distributions with cubic variance function of mean. Therefore, ZIIT, ZIPIG and ZISA are able to accommodate data with excess zeros and very heavy tailed. They are recommended to be used in modeling overdispersed medical count data when ZIP and ZINB are inadequate.
Keywords: Zero inflated, inverse trinomial distribution, Poisson inverse Gaussian distribution, strict arcsine distribution, Pearson’s goodness of fit.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33067807 On the Combination of Patient-Generated Data with Data from a Secure Clinical Network Environment – A Practical Example
Authors: Jeroen S. de Bruin, Karin Schindler, Christian Schuh
Abstract:
With increasingly more mobile health applications appearing due to the popularity of smartphones, the possibility arises that these data can be used to improve the medical diagnostic process, as well as the overall quality of healthcare, while at the same time lowering costs. However, as of yet there have been no reports of a successful combination of patient-generated data from smartphones with data from clinical routine. In this paper we describe how these two types of data can be combined in a secure way without modification to hospital information systems, and how they can together be used in a medical expert system for automatic nutritional classification and triage.
Keywords: Data integration, disease-related malnutrition, expert systems, mobile health.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21917806 Designing Ontology-Based Knowledge Integration for Preprocessing of Medical Data in Enhancing a Machine Learning System for Coding Assignment of a Multi-Label Medical Text
Authors: Phanu Waraporn
Abstract:
This paper discusses the designing of knowledge integration of clinical information extracted from distributed medical ontologies in order to ameliorate a machine learning-based multilabel coding assignment system. The proposed approach is implemented using a decision tree technique of the machine learning on the university hospital data for patients with Coronary Heart Disease (CHD). The preliminary results obtained show a satisfactory finding that the use of medical ontologies improves the overall system performance.
Keywords: Medical Ontology, Knowledge Integration, Machine Learning, Medical Coding, Text Assignment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18417805 Latent Topic Based Medical Data Classification
Authors: Jian-hua Yeh, Shi-yi Kuo
Abstract:
This paper discusses the classification process for medical data. In this paper, we use the data from ACM KDDCup 2008 to demonstrate our classification process based on latent topic discovery. In this data set, the target set and outliers are quite different in their nature: target set is only 0.6% size in total, while the outliers consist of 99.4% of the data set. We use this data set as an example to show how we dealt with this extremely biased data set with latent topic discovery and noise reduction techniques. Our experiment faces two major challenge: (1) extremely distributed outliers, and (2) positive samples are far smaller than negative ones. We try to propose a suitable process flow to deal with these issues and get a best AUC result of 0.98.
Keywords: classification, latent topics, outlier adjustment, feature scaling
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16327804 Exploring the Medical Tourism Development Barriers and Participation Willingness in Taiwan: An Example of Mainland Tourist
Authors: Pei-Ti Chen, Ren-Hua Kung, Ming –Yi Huang , Fuu-Diing Chen, Lei Pei
Abstract:
Medical Tourism is a new development in Taiwan recently. The willingness and barriers of potential tourists from China to participate medical tourism are studied. A questionnaire survey is conducted and the SPSS software is used to analyze data. The results show that under one fifth of respondents express full medical tourism participation willingness. Among travel barriers toward medical tourism, “insufficient information of medical tourism trip", “not enough time", “no companion", “worrying about unsatisfied itinerary." are perceived the most important barriers.Keywords: medical tourism, travel barriers, participation willingness
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29147803 Security Architecture for At-Home Medical Care Using Sensor Network
Authors: S.S.Mohanavalli, Sheila Anand
Abstract:
This paper proposes a novel architecture for At- Home medical care which enables senior citizens, patients with chronic ailments and patients requiring post- operative care to be remotely monitored in the comfort of their homes. This architecture is implemented using sensors and wireless networking for transmitting patient data to the hospitals, health- care centers for monitoring by medical professionals. Patients are equipped with sensors to measure their physiological parameters, like blood pressure, pulse rate etc. and a Wearable Data Acquisition Unit is used to transmit the patient sensor data. Medical professionals can be alerted to any abnormal variations in these values for diagnosis and suitable treatment. Security threats and challenges inherent to wireless communication and sensor network have been discussed and a security mechanism to ensure data confidentiality and source authentication has been proposed. Symmetric key algorithm AES has been used for encrypting the data and a patent-free, two-pass block cipher mode CCFB has been used for implementing semantic security.Keywords: data confidentiality, integrity, remotemonitoring, source authentication
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17267802 Application of Multi-Dimensional Principal Component Analysis to Medical Data
Authors: Naoki Yamamoto, Jun Murakami, Chiharu Okuma, Yutaro Shigeto, Satoko Saito, Takashi Izumi, Nozomi Hayashida
Abstract:
Multi-dimensional principal component analysis (PCA) is the extension of the PCA, which is used widely as the dimensionality reduction technique in multivariate data analysis, to handle multi-dimensional data. To calculate the PCA the singular value decomposition (SVD) is commonly employed by the reason of its numerical stability. The multi-dimensional PCA can be calculated by using the higher-order SVD (HOSVD), which is proposed by Lathauwer et al., similarly with the case of ordinary PCA. In this paper, we apply the multi-dimensional PCA to the multi-dimensional medical data including the functional independence measure (FIM) score, and describe the results of experimental analysis.Keywords: multi-dimensional principal component analysis, higher-order SVD (HOSVD), functional independence measure (FIM), medical data, tensor decomposition
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24887801 Steps towards the Development of National Health Data Standards in Developing Countries: An Exploratory Qualitative Study in Saudi Arabia
Authors: Abdullah I. Alkraiji, Thomas W. Jackson, Ian R. Murray
Abstract:
The proliferation of health data standards today is somewhat overlapping and conflicting, resulting in market confusion and leading to increasing proprietary interests. The government role and support in standardization for health data are thought to be crucial in order to establish credible standards for the next decade, to maximize interoperability across the health sector, and to decrease the risks associated with the implementation of non-standard systems. The normative literature missed out the exploration of the different steps required to be undertaken by the government towards the development of national health data standards. Based on the lessons learned from a qualitative study investigating the different issues to the adoption of health data standards in the major tertiary hospitals in Saudi Arabia and the opinions and feedback from different experts in the areas of data exchange and standards and medical informatics in Saudi Arabia and UK, a list of steps required towards the development of national health data standards was constructed. Main steps are the existence of: a national formal reference for health data standards, an agreed national strategic direction for medical data exchange, a national medical information management plan and a national accreditation body, and more important is the change management at the national and organizational level. The outcome of this study can be used by academics and practitioners to develop the planning of health data standards, and in particular those in developing countries.
Keywords: Interoperability, Case Study, Health Data Standards, Medical Data Exchange, Saudi Arabia.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19927800 A Combined Cipher Text Policy Attribute-Based Encryption and Timed-Release Encryption Method for Securing Medical Data in Cloud
Authors: G. Shruthi, Purohit Shrinivasacharya
Abstract:
The biggest problem in cloud is securing an outsourcing data. A cloud environment cannot be considered to be trusted. It becomes more challenging when outsourced data sources are managed by multiple outsourcers with different access rights. Several methods have been proposed to protect data confidentiality against the cloud service provider to support fine-grained data access control. We propose a method with combined Cipher Text Policy Attribute-based Encryption (CP-ABE) and Timed-release encryption (TRE) secure method to control medical data storage in public cloud.Keywords: Attribute, encryption, security, trapdoor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7457799 Data Mining in Oral Medicine Using Decision Trees
Authors: Fahad Shahbaz Khan, Rao Muhammad Anwer, Olof Torgersson, Göran Falkman
Abstract:
Data mining has been used very frequently to extract hidden information from large databases. This paper suggests the use of decision trees for continuously extracting the clinical reasoning in the form of medical expert-s actions that is inherent in large number of EMRs (Electronic Medical records). In this way the extracted data could be used to teach students of oral medicine a number of orderly processes for dealing with patients who represent with different problems within the practice context over time.Keywords: Data mining, Oral Medicine, Decision Trees, WEKA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24877798 Authentication and Data Hiding Using a Reversible ROI-based Watermarking Scheme for DICOM Images
Authors: Osamah M. Al-Qershi, Khoo Bee Ee
Abstract:
In recent years image watermarking has become an important research area in data security, confidentiality and image integrity. Many watermarking techniques were proposed for medical images. However, medical images, unlike most of images, require extreme care when embedding additional data within them because the additional information must not affect the image quality and readability. Also the medical records, electronic or not, are linked to the medical secrecy, for that reason, the records must be confidential. To fulfill those requirements, this paper presents a lossless watermarking scheme for DICOM images. The proposed a fragile scheme combines two reversible techniques based on difference expansion for patient's data hiding and protecting the region of interest (ROI) with tamper detection and recovery capability. Patient's data are embedded into ROI, while recovery data are embedded into region of non-interest (RONI). The experimental results show that the original image can be exactly extracted from the watermarked one in case of no tampering. In case of tampered ROI, tampered area can be localized and recovered with a high quality version of the original area.Keywords: DICOM, reversible, ROI-based, watermarking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17067797 Reversible Medical Image Watermarking For Tamper Detection And Recovery With Run Length Encoding Compression
Authors: Siau-Chuin Liew, Siau-Way Liew, Jasni Mohd Zain
Abstract:
Digital watermarking in medical images can ensure the authenticity and integrity of the image. This design paper reviews some existing watermarking schemes and proposes a reversible tamper detection and recovery watermarking scheme. Watermark data from ROI (Region Of Interest) are stored in RONI (Region Of Non Interest). The embedded watermark allows tampering detection and tampered image recovery. The watermark is also reversible and data compression technique was used to allow higher embedding capacity.Keywords: data compression, medical image, reversible, tamperdetection and recovery, watermark.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20687796 EPR Hiding in Medical Images for Telemedicine
Authors: K. A. Navas, S. Archana Thampy, M. Sasikumar
Abstract:
Medical image data hiding has strict constrains such as high imperceptibility, high capacity and high robustness. Achieving these three requirements simultaneously is highly cumbersome. Some works have been reported in the literature on data hiding, watermarking and stegnography which are suitable for telemedicine applications. None is reliable in all aspects. Electronic Patient Report (EPR) data hiding for telemedicine demand it blind and reversible. This paper proposes a novel approach to blind reversible data hiding based on integer wavelet transform. Experimental results shows that this scheme outperforms the prior arts in terms of zero BER (Bit Error Rate), higher PSNR (Peak Signal to Noise Ratio), and large EPR data embedding capacity with WPSNR (Weighted Peak Signal to Noise Ratio) around 53 dB, compared with the existing reversible data hiding schemes.Keywords: Biomedical imaging, Data security, Datacommunication, Teleconferencing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27387795 The Relevance of Data Warehousing and Data Mining in the Field of Evidence-based Medicine to Support Healthcare Decision Making
Authors: Nevena Stolba, A Min Tjoa
Abstract:
Evidence-based medicine is a new direction in modern healthcare. Its task is to prevent, diagnose and medicate diseases using medical evidence. Medical data about a large patient population is analyzed to perform healthcare management and medical research. In order to obtain the best evidence for a given disease, external clinical expertise as well as internal clinical experience must be available to the healthcare practitioners at right time and in the right manner. External evidence-based knowledge can not be applied directly to the patient without adjusting it to the patient-s health condition. We propose a data warehouse based approach as a suitable solution for the integration of external evidence-based data sources into the existing clinical information system and data mining techniques for finding appropriate therapy for a given patient and a given disease. Through integration of data warehousing, OLAP and data mining techniques in the healthcare area, an easy to use decision support platform, which supports decision making process of care givers and clinical managers, is built. We present three case studies, which show, that a clinical data warehouse that facilitates evidence-based medicine is a reliable, powerful and user-friendly platform for strategic decision making, which has a great relevance for the practice and acceptance of evidence-based medicine.
Keywords: data mining, data warehousing, decision-support systems, evidence-based medicine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 37937794 Proposition of an Ontology of Diseases and Their Signs from Medical Ontologies Integration
Authors: Adama Sow, Abdoulaye Guiss´e, Oumar Niang
Abstract:
To assist medical diagnosis, we propose a federation of several existing and open medical ontologies and terminologies. The goal is to merge the strengths of all these resources to provide clinicians the access to a variety of shared knowledges that can facilitate identification and association of human diseases and all of their available characteristic signs such as symptoms and clinical signs. This work results to an integration model loaded from target known ontologies of the bioportal platform such as DOID, MESH, and SNOMED for diseases selection, SYMP, and CSSO for all existing signs.Keywords: Medical decision, medical ontologies, ontologies integration, linked data, knowledge ingeneering, e-health system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7597793 The Resource Description Framework (RDF) as a Modern Structure for Medical Data
Authors: Gabriela Lindemann, Danilo Schmidt, Thomas Schrader, Dietmar Keune
Abstract:
The amount and heterogeneity of data in biomedical research, notably in interdisciplinary fields, requires new methods for the collection, presentation and analysis of information. Important data from laboratory experiments as well as patient trials are available but come out of distributed resources. The Charité - University Hospital Berlin has established together with the German Research Foundation (DFG) a new information service centre for kidney diseases and transplantation (Open European Nephrology Science Centre - OpEN.SC). Beside a collaborative aspect to create new research groups every single partner or institution of this science information centre making his own data available is allowed to search the whole data pool of the various involved centres. A core task is the implementation of a non-restricting open data structure for the various different data sources. We decided to use a modern RDF model and in a first phase transformed original data coming from the web-based Electronic Patient Record database TBase©.
Keywords: Medical databases, Resource Description Framework (RDF), metadata repository.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20227792 A Novel Fuzzy-Neural Based Medical Diagnosis System
Authors: S. Moein, S. A. Monadjemi, P. Moallem
Abstract:
In this paper, application of artificial neural networks in typical disease diagnosis has been investigated. The real procedure of medical diagnosis which usually is employed by physicians was analyzed and converted to a machine implementable format. Then after selecting some symptoms of eight different diseases, a data set contains the information of a few hundreds cases was configured and applied to a MLP neural network. The results of the experiments and also the advantages of using a fuzzy approach were discussed as well. Outcomes suggest the role of effective symptoms selection and the advantages of data fuzzificaton on a neural networks-based automatic medical diagnosis system.Keywords: Artificial Neural Networks, Fuzzy Logic, MedicalDiagnosis, Symptoms, Fuzzification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22497791 Medical Imaging Techniques in Clinical Medicine
Authors: Sharan Badiger, Prema T. Akkasaligar
Abstract:
Medical imaging technology has experienced a dramatic change in the last few years. Medical imaging refers to the techniques and processes used to create images of the human body (or parts thereof) for various clinical purposes such as medical procedures and diagnosis or medical science including the study of normal anatomy and function. With the growth of computers and image technology, medical imaging has greatly influenced the medical field. The diagnosis of a health problem is now highly dependent on the quality and the credibility of the image analysis. This paper deals with the various aspects and types of medical imaging.
Keywords: Computed Tomography, Echocardiography, Medical Imaging, Magnetic Resonance, Ultrasound Imaging.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35547790 Data Mining for Cancer Management in Egypt Case Study: Childhood Acute Lymphoblastic Leukemia
Authors: Nevine M. Labib, Michael N. Malek
Abstract:
Data Mining aims at discovering knowledge out of data and presenting it in a form that is easily comprehensible to humans. One of the useful applications in Egypt is the Cancer management, especially the management of Acute Lymphoblastic Leukemia or ALL, which is the most common type of cancer in children. This paper discusses the process of designing a prototype that can help in the management of childhood ALL, which has a great significance in the health care field. Besides, it has a social impact on decreasing the rate of infection in children in Egypt. It also provides valubale information about the distribution and segmentation of ALL in Egypt, which may be linked to the possible risk factors. Undirected Knowledge Discovery is used since, in the case of this research project, there is no target field as the data provided is mainly subjective. This is done in order to quantify the subjective variables. Therefore, the computer will be asked to identify significant patterns in the provided medical data about ALL. This may be achieved through collecting the data necessary for the system, determimng the data mining technique to be used for the system, and choosing the most suitable implementation tool for the domain. The research makes use of a data mining tool, Clementine, so as to apply Decision Trees technique. We feed it with data extracted from real-life cases taken from specialized Cancer Institutes. Relevant medical cases details such as patient medical history and diagnosis are analyzed, classified, and clustered in order to improve the disease management.Keywords: Data Mining, Decision Trees, Knowledge Discovery, Leukemia.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22037789 Goal-Based Request Cloud Resource Broker in Medical Application
Authors: Mohamad Izuddin Nordin, Azween Abdullah, Mahamat Issa Hassan
Abstract:
In this paper, cloud resource broker using goalbased request in medical application is proposed. To handle recent huge production of digital images and data in medical informatics application, the cloud resource broker could be used by medical practitioner for proper process in discovering and selecting correct information and application. This paper summarizes several reviewed articles to relate medical informatics application with current broker technology and presents a research work in applying goal-based request in cloud resource broker to optimize the use of resources in cloud environment. The objective of proposing a new kind of resource broker is to enhance the current resource scheduling, discovery, and selection procedures. We believed that it could help to maximize resources allocation in medical informatics application.Keywords: Broker, Cloud Computing, Medical Informatics, Resources Discovery, Resource Selection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20497788 Development of a Secured Telemedical System Using Biometric Feature
Authors: O. Iyare, A. H. Afolayan, O. T. Oluwadare, B. K. Alese
Abstract:
Access to advanced medical services has been one of the medical challenges faced by our present society especially in distant geographical locations which may be inaccessible. Then the need for telemedicine arises through which live videos of a doctor can be streamed to a patient located anywhere in the world at any time. Patients’ medical records contain very sensitive information which should not be made accessible to unauthorized people in order to protect privacy, integrity and confidentiality. This research work focuses on a more robust security measure which is biometric (fingerprint) as a form of access control to data of patients by the medical specialist/practitioner.Keywords: Biometrics, telemedicine, privacy, patient information.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16407787 An Improved k Nearest Neighbor Classifier Using Interestingness Measures for Medical Image Mining
Authors: J. Alamelu Mangai, Satej Wagle, V. Santhosh Kumar
Abstract:
The exponential increase in the volume of medical image database has imposed new challenges to clinical routine in maintaining patient history, diagnosis, treatment and monitoring. With the advent of data mining and machine learning techniques it is possible to automate and/or assist physicians in clinical diagnosis. In this research a medical image classification framework using data mining techniques is proposed. It involves feature extraction, feature selection, feature discretization and classification. In the classification phase, the performance of the traditional kNN k nearest neighbor classifier is improved using a feature weighting scheme and a distance weighted voting instead of simple majority voting. Feature weights are calculated using the interestingness measures used in association rule mining. Experiments on the retinal fundus images show that the proposed framework improves the classification accuracy of traditional kNN from 78.57 % to 92.85 %.
Keywords: Medical Image Mining, Data Mining, Feature Weighting, Association Rule Mining, k nearest neighbor classifier.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32967786 Analysis of a Population of Diabetic Patients Databases with Classifiers
Authors: Murat Koklu, Yavuz Unal
Abstract:
Data mining can be called as a technique to extract information from data. It is the process of obtaining hidden information and then turning it into qualified knowledge by statistical and artificial intelligence technique. One of its application areas is medical area to form decision support systems for diagnosis just by inventing meaningful information from given medical data. In this study a decision support system for diagnosis of illness that make use of data mining and three different artificial intelligence classifier algorithms namely Multilayer Perceptron, Naive Bayes Classifier and J.48. Pima Indian dataset of UCI Machine Learning Repository was used. This dataset includes urinary and blood test results of 768 patients. These test results consist of 8 different feature vectors. Obtained classifying results were compared with the previous studies. The suggestions for future studies were presented.
Keywords: Artificial Intelligence, Classifiers, Data Mining, Diabetic Patients.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 54187785 Mainland Chinese Customers' Intention toward Medical Tourism in Taiwan
Authors: Hsiu-Yuan Wang, Shwu-Huey Wang
Abstract:
This study proposes and tests a rescapturing elements of perceived gain and loss that, by perceived value of medical tourism products, influencintention of potential customers. Data from 301 usable qwere tested against the research model using the structmodeling approach. The results indicated that perceivedkey predictor of customer intentions. As for benefimedical quality, service quality and enjoyment wcomponents that significantly influenced the perceptiRegarding sacrifice, the effects of perceived risk on pewere significant. The findings can provide insights intohow destination countries can make medical tourism a wfor themselves and international patients.KeywordsMedical tourism, perceived valueintention.Keywords: Medical tourism, perceived valueintention.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21777784 Web Server with Multi-Agent Support for Medical Practitioners by JADE Technology
Authors: O. Saravanan, A. Nagappan, P. Gnanasekar, S. Sharavanan, D. Vinodkumar, T. Elayabharathi, G. Karthik
Abstract:
The multi-agent system for processing Bio-signals will help the medical practitioners to have a standard examination procedure stored in web server. Web Servers supporting any standard Search Engine follow all possible combinations of the search keywords as an input by the user to a Search Engine. As a result, a huge number of Web-pages are shown in the Web browser. It also helps the medical practitioner to interact with the expert in the field his need in order to make a proper judgment in the diagnosis phase [3].A web server uses a web server plug in to establish and maintained the medical practitioner to make a fast analysis. If the user uses the web server client can get a related data requesting their search. DB agent, EEG / ECG / EMG agents- user placed with difficult aspects for updating medical information-s in web server.Keywords: DB agent, EEG, ECG, EMG, Web server agent, JADE
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2066