Search results for: Electron backscattering diffraction (EBSD)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 712

Search results for: Electron backscattering diffraction (EBSD)

82 Effect of Precursors Aging Time on the Photocatalytic Activity of ZnO Thin Films

Authors: N. Kaneva, A. Bojinova, K. Papazova

Abstract:

Thin ZnO films are deposited on glass substrates via sol–gel method and dip-coating. The films are prepared from zinc acetate dehydrate as a starting reagent. After that the as-prepared ZnO sol is aged for different periods (0, 1, 3, 5, 10, 15 and 30 days). Nanocrystalline thin films are deposited from various sols. The effect ZnO sols aging time on the structural and photocatalytic properties of the films is studied. The films surface is studied by Scanning Electron Microscopy. The effect of the aging time of the starting solution is studied in the photocatalytic degradation of Reactive Black 5 (RB5) by UV-vis spectroscopy. The experiments are conducted upon UV-light illumination and in complete darkness. The variation of the absorption spectra shows the degradation of RB5 dissolved in water, as a result of the reaction, occurring on the surface of the films and promoted by UV irradiation. The initial concentrations of dye (5, 10 and 20 ppm) and the effect of the aging time are varied during the experiments. The results show, that the increasing aging time of starting solution with respect to ZnO generally promotes photocatalytic activity. The thin films obtained from ZnO sol, which is aged 30 days have best photocatalytic degradation of the dye (97,22%) in comparison with the freshly prepared ones (65,92%). The samples and photocatalytic experimental results are reproducible. Nevertheless, all films exhibit a substantial activity in both UV light and darkness, which is promising for the development of new ZnO photocatalysts by sol-gel method.

Keywords: ZnO thin films, sol-gel, photocatalysis, aging time.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2421
81 Thermal and Morphological Evaluation of Chemically Pretreated Sugarcane Bagasse

Authors: Glauber Cruz, Patrícia A. S. Monteiro, Carlos E. M. Braz, Paulo Seleghin Jr., Igor Polikarpov, Paula M.Crnkovic

Abstract:

Enzymatic hydrolysis is one of the major steps involved in the conversion from sugarcane bagasse to yield ethanol. This process offers potential for yields and selectivity higher, lower energy costs and milder operating conditions than chemical processes. However, the presence of some factors such as lignin content, crystallinity degree of the cellulose, and particle sizes, limits the digestibility of the cellulose present in the lignocellulosic biomasses. Pretreatment aims to improve the access of the enzyme to the substrate. In this study sugarcane bagasse was submitted chemical pretreatment that consisted of two consecutive steps, the first with dilute sulfuric acid (1 % (v/v) H2SO4), and the second with alkaline solutions with different concentrations of NaOH (1, 2, 3 and 4 % (w/v)). Thermal Analysis (TG/ DTG and DTA) was used to evaluate hemicellulose, cellulose and lignin contents in the samples. Scanning Electron Microscopy (SEM) was used to evaluate the morphological structures of the in natura and chemically treated samples. Results showed that pretreatments were effective in chemical degradation of lignocellulosic materials of the samples, and also was possible to observe the morphological changes occurring in the biomasses after pretreatments.

Keywords: Alkaline solutions, bioethanol production, dilute acid, enzymatic hydrolysis, lignocellulosic biomass.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2525
80 Cold-pressed Kenaf and Fibreglass Hybrid Composites Laminates: Effect of Fibre Types

Authors: Z. Salleh, M. N. Berhan, Koay Mei Hyie, D. H. Isaac

Abstract:

Natural fibres have emerged as the potential reinforcement material for composites and thus gain attraction by many researchers. This is mainly due to their applicable benefits as they offer low density, low cost, renewable, biodegradability and environmentally harmless and also comparable mechanical properties with synthetic fibre composites. The properties of hybrid composites highly depends on several factors, including the interaction of fillers with the polymeric matrix, shape and size (aspect ratio), and orientation of fillers [1]. In this study, natural fibre kenaf composites and kenaf/fibreglass hybrid composites were fabricated by a combination of hand lay-up method and cold-press method. The effect of different fibre types (powder, short and long) on the tensile properties of composites is investigated. The kenaf composites with and without the addition of fibreglass were then characterized by tensile testing and scanning electron microscopy. A significant improvement in tensile strength and modulus were indicated by the introduction of long kenaf/woven fibreglass hybrid composite. However, the opposite trends are observed in kenaf powder composite. Fractographic observation shows that fibre/matrix debonding causes the fibres pull out. This phenomenon results in the fibre and matrix fracture.

Keywords: Kenaf, Fibreglass, Hybrid Composite, Tensile Strength, Tensile Modulus.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2160
79 The Hall Coefficient and Magnetoresistance in Rectangular Quantum Wires with Infinitely High Potential under the Influence of a Laser Radiation

Authors: Nguyen Thu Huong, Nguyen Quang Bau

Abstract:

The Hall Coefficient (HC) and the Magnetoresistance (MR) have been studied in two-dimensional systems. The HC and the MR in Rectangular Quantum Wire (RQW) subjected to a crossed DC electric field and magnetic field in the presence of a Strong Electromagnetic Wave (EMW) characterized by electric field are studied in this work. Using the quantum kinetic equation for electrons interacting with optical phonons, we obtain the analytic expressions for the HC and the MR with a dependence on magnetic field, EMW frequency, temperatures of systems and the length characteristic parameters of RQW. These expressions are different from those obtained for bulk semiconductors and cylindrical quantum wires. The analytical results are applied to GaAs/GaAs/Al. For this material, MR depends on the ratio of the EMW frequency to the cyclotron frequency. Indeed, MR reaches a minimum at the ratio 5/4, and when this ratio increases, it tends towards a saturation value. The HC can take negative or positive values. Each curve has one maximum and one minimum. When magnetic field increases, the HC is negative, achieves a minimum value and then increases suddenly to a maximum with a positive value. This phenomenon differs from the one observed in cylindrical quantum wire, which does not have maximum and minimum values.

Keywords: Hall coefficient, rectangular quantum wires, electron-optical phonon interaction, quantum kinetic equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1851
78 Ab initio Study of Co2ZrGe and Co2NbB Full Heusler Compounds

Authors: Abada Ahmed, Hiadsi Said, Ouahrani Tarik, Amrani Bouhalouane, Amara Kadda

Abstract:

Using the first-principles full-potential linearized augmented plane wave plus local orbital (FP-LAPW+lo) method based on density functional theory (DFT), we have investigated the electronic structure and magnetism of full Heusler alloys Co2ZrGe and Co2NbB. These compounds are predicted to be half-metallic ferromagnets (HMFs) with a total magnetic moment of 2.000 B per formula unit, well consistent with the Slater-Pauling rule. Calculations show that both the alloys have an indirect band gaps, in the minority-spin channel of density of states (DOS), with values of 0.58 eV and 0.47 eV for Co2ZrGe and Co2NbB, respectively. Analysis of the DOS and magnetic moments indicates that their magnetism is mainly related to the d-d hybridization between the Co and Zr (or Nb) atoms. The half-metallicity is found to be relatively robust against volume changes. In addition, an atom inside molecule AIM formalism and an electron localization function ELF were also adopted to study the bonding properties of these compounds, building a bridge between their electronic and bonding behavior. As they have a good crystallographic compatibility with the lattice of semiconductors used industrially and negative calculated cohesive energies with considerable absolute values these two alloys could be promising magnetic materials in the spintronic field.

Keywords: Electronic properties, full Heusler alloys, halfmetallic ferromagnets, magnetic properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2482
77 Chemical Composition, Petrology and P-T Conditions of Ti-Mg-Biotites within Syenitic Rocks from the Lar Igneous Suite, East of Iran

Authors: Sasan Ghafaribijar, Javad Hakimi, Mohsen Arvin, Peyman Tahernezhad

Abstract:

The Lar Igneous Suite (LIS), east of Iran, is part of post collisional alkaline magmatism related to Late Cretaceous- mid Eocene Sistan suture zone. The suite consists of a wide variety of igneous rocks, from volcanic to intrusive and hypabissal rocks such as tuffs, trachyte, monzonite, syenites and lamprophyres. Syenitic rocks which mainly occur in a giant ring dike and stocks, are shoshonitic to potassic-ultrapotassic (K2O/Na2O > 2 wt.%; MgO > 3 wt.%; K2O > 3 wt.%) in composition and are also associated with Cu-Mo mineralization. In this study, chemical composition of biotites within the Lar syenites (LS) is determined by electron microprobe analysis. The results show that LS biotites are Ti-Mg-biotites (phlogopite) which contain relatively high Ti and Mg, and low Fe concentrations. The Mg/(Fe2++ Mg) ratio in these biotites range between 0.56 and 0.73 that represent their transitionally chemical evolution. TiO2 content in these biotites is high and in the range of 3.0-5.4 wt.%. These chemical characteristics indicate that the LS biotites are primary and have been crystallized directly from magma. The investigations also demonstrate that the LS biotites have crystallized from a magma of orogenic nature. Temperature and pressure are the most significant factors controlling Mg and Ti content in the LS biotites, respectively. The results show that the LS biotites crystallized at temperatures (T) between 800 to 842 °C and pressures (P) between 0.99 to 1.44 kbar. These conditions are indicative of a crystallization depth of 3.26-4.74 km.

Keywords: Sistan suture zone, Lar Igneous Suite, Zahedan, syenite, biotite.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 668
76 CFD Analysis of Multi-Phase Reacting Transport Phenomena in Discharge Process of Non-Aqueous Lithium-Air Battery

Authors: Jinliang Yuan, Jong-Sung Yu, Bengt Sundén

Abstract:

A computational fluid dynamics (CFD) model is developed for rechargeable non-aqueous electrolyte lithium-air batteries with a partial opening for oxygen supply to the cathode. Multi-phase transport phenomena occurred in the battery are considered, including dissolved lithium ions and oxygen gas in the liquid electrolyte, solid-phase electron transfer in the porous functional materials and liquid-phase charge transport in the electrolyte. These transport processes are coupled with the electrochemical reactions at the active surfaces, and effects of discharge reaction-generated solid Li2O2 on the transport properties and the electrochemical reaction rate are evaluated and implemented in the model. The predicted results are discussed and analyzed in terms of the spatial and transient distribution of various parameters, such as local oxygen concentration, reaction rate, variable solid Li2O2 volume fraction and porosity, as well as the effective diffusion coefficients. It is found that the effect of the solid Li2O2 product deposited at the solid active surfaces is significant on the transport phenomena and the overall battery performance.

Keywords: Computational Fluid Dynamics (CFD), Modeling, Multi-phase, Transport Phenomena, Lithium-air battery.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2727
75 Static and Dynamic Characteristics of an Appropriated and Recessed n-GaN/AlGaN/GaN HEMT

Authors: A. Hamdoune, M. Abdelmoumene, A. Hamroun

Abstract:

The objective of this paper is to simulate static I-V and dynamic characteristics of an appropriated and recessed n-GaN/AlxGa1-xN/GaN high electron mobility (HEMT). Using SILVACO TCAD device simulation, and optimized technological parameters; we calculate the drain-source current (lDS) as a function of the drain-source voltage (VDS) for different values ​​of the gate-source voltage (VGS), and the drain-source current (lDS) depending on the gate-source voltage (VGS) for a drain-source voltage (VDS) of 20 V, for various temperatures. Then, we calculate the cut-off frequency and the maximum oscillation frequency for different temperatures.

We obtain a high drain-current equal to 60 mA, a low knee voltage (Vknee) of 2 V, a high pinch-off voltage (VGS0) of 53.5 V, a transconductance greater than 600 mS/mm, a cut-off frequency (fT) of about 330 GHz, and a maximum oscillation frequency (fmax) of about 1 THz.

Keywords: n-GaN/AlGaN/GaN HEMT, drain-source current (IDS), transconductance (gm), cut-off frequency (fT), maximum oscillation frequency (fmax).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2336
74 Carbamazepine Co-crystal Screening with Dicarboxylic Acids Co-Crystal Formers

Authors: Syarifah Abd Rahim, Fatinah Ab Rahman, Engku N. E. M. Nasir, Noor A. Ramle

Abstract:

Co-crystal is believed to improve the solubility and dissolution rates and thus, enhanced the bioavailability of poor water soluble drugs particularly during the oral route of administration. With the existing of poorly soluble drugs in pharmaceutical industry, the screening of co-crystal formation using carbamazepine (CBZ) as a model drug compound with dicarboxylic acids co-crystal formers (CCF) namely fumaric (FA) and succinic (SA) acids in ethanol has been studied. The co-crystal formations were studied by varying the mol ratio values of CCF to CBZ to access the effect of CCF concentration on the formation of the co-crystal. Solvent evaporation, slurry and cooling crystallization which representing the solution based method co-crystal screening were used. Based on the differential scanning calorimetry (DSC) analysis, the melting point of CBZ-SA in different ratio was in the range between 188oC-189oC. For CBZ-FA form A and CBZ-FA form B the melting point in different ratio were in the range of 174oC-175oC and 185oC-186oC respectively. The product crystal from the screening was also characterized using X-ray powder diffraction (XRPD). The XRPD pattern profile analysis has shown that the CBZ co-crystals with FA and SA were successfully formed for all ratios studied. The findings revealed that CBZ-FA co-crystal were formed in two different polymorphs. It was found that CBZ-FA form A and form B were formed from evaporation and slurry crystallization methods respectively. On the other hand, in cooling crystallization method, CBZ-FA form A was formed at lower mol ratio of CCF to CBZ and vice versa. This study disclosed that different methods and mol ratios during the co-crystal screening can affect the outcome of co-crystal produced such as polymorphic forms of co-crystal and thereof. Thus, it was suggested that careful attentions is needed during the screening since the co-crystal formation is currently one of the promising approach to be considered in research and development for pharmaceutical industry to improve the poorly soluble drugs.

Keywords: Carbamazepine, co-crystal, co-crystal former, dicarboxylic acid.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2891
73 Effect of Birks Constant and Defocusing Parameter on Triple-to-Double Coincidence Ratio Parameter in Monte Carlo Simulation-GEANT4

Authors: F. Abubaker, F. Tortorici, M. Capogni, C. Sutera, V. Bellini

Abstract:

This project concerns with the detection efficiency of the portable Triple-to-Double Coincidence Ratio (TDCR) at the National Institute of Metrology of Ionizing Radiation (INMRI-ENEA) which allows direct activity measurement and radionuclide standardization for pure-beta emitter or pure electron capture radionuclides. The dependency of the simulated detection efficiency of the TDCR, by using Monte Carlo simulation Geant4 code, on the Birks factor (kB) and defocusing parameter has been examined especially for low energy beta-emitter radionuclides such as 3H and 14C, for which this dependency is relevant. The results achieved in this analysis can be used for selecting the best kB factor and the defocusing parameter for computing theoretical TDCR parameter value. The theoretical results were compared with the available ones, measured by the ENEA TDCR portable detector, for some pure-beta emitter radionuclides. This analysis allowed to improve the knowledge of the characteristics of the ENEA TDCR detector that can be used as a traveling instrument for in-situ measurements with particular benefits in many applications in the field of nuclear medicine and in the nuclear energy industry.

Keywords: Birks constant, defocusing parameter, GEANT4 code, TDCR parameter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 474
72 Feasibility Investigation of Near Infrared Spectrometry for Particle Size Estimation of Nano Structures

Authors: A. Bagheri Garmarudi, M. Khanmohammadi, N. Khoddami, K. Shabani

Abstract:

Determination of nano particle size is substantial since the nano particle size exerts a significant effect on various properties of nano materials. Accordingly, proposing non-destructive, accurate and rapid techniques for this aim is of high interest. There are some conventional techniques to investigate the morphology and grain size of nano particles such as scanning electron microscopy (SEM), atomic force microscopy (AFM) and X-ray diffractometry (XRD). Vibrational spectroscopy is utilized to characterize different compounds and applied for evaluation of the average particle size based on relationship between particle size and near infrared spectra [1,4] , but it has never been applied in quantitative morphological analysis of nano materials. So far, the potential application of nearinfrared (NIR) spectroscopy with its ability in rapid analysis of powdered materials with minimal sample preparation, has been suggested for particle size determination of powdered pharmaceuticals. The relationship between particle size and diffuse reflectance (DR) spectra in near infrared region has been applied to introduce a method for estimation of particle size. Back propagation artificial neural network (BP-ANN) as a nonlinear model was applied to estimate average particle size based on near infrared diffuse reflectance spectra. Thirty five different nano TiO2 samples with different particle size were analyzed by DR-FTNIR spectrometry and the obtained data were processed by BP- ANN.

Keywords: near infrared, particle size, chemometrics, neuralnetwork, nano structure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1817
71 Mechanical Properties and Chloride Diffusion of Ceramic Waste Aggregate Mortar Containing Ground Granulated Blast–Furnace Slag

Authors: H. Higashiyama, M. Sappakittipakorn, M. Mizukoshi, O. Takahashi

Abstract:

Ceramic Waste Aggregates (CWAs) were made from electric porcelain insulator wastes supplied from an electric power company, which were crushed and ground to fine aggregate sizes. In this study, to develop the CWA mortar as an eco–efficient, ground granulated blast–furnace slag (GGBS) as a Supplementary Cementitious Material (SCM) was incorporated. The water–to–binder ratio (W/B) of the CWA mortars was varied at 0.4, 0.5, and 0.6. The cement of the CWA mortar was replaced by GGBS at 20 and 40% by volume (at about 18 and 37% by weight). Mechanical properties of compressive and splitting tensile strengths, and elastic modulus were evaluated at the age of 7, 28, and 91 days. Moreover, the chloride ingress test was carried out on the CWA mortars in a 5.0% NaCl solution for 48 weeks. The chloride diffusion was assessed by using an electron probe microanalysis (EPMA). To consider the relation of the apparent chloride diffusion coefficient and the pore size, the pore size distribution test was also performed using a mercury intrusion porosimetry at the same time with the EPMA. The compressive strength of the CWA mortars with the GGBS was higher than that without the GGBS at the age of 28 and 91 days. The resistance to the chloride ingress of the CWA mortar was effective in proportion to the GGBS replacement level.

Keywords: Ceramic waste aggregate, Chloride diffusion, GGBS, Pore size distribution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1972
70 Preparation and Characterization of Calcium Phosphate Cement

Authors: W. Thepsuwan, N. Monmaturapoj

Abstract:

Calcium phosphate cement (CPC) is one of the most attractive bioceramics due to its moldable and shape ability to fill complicated bony cavities or small dental defect positions. In this study, CPC was produced by using mixture of tetracalcium phosphate (TTCP, Ca4O(PO4)2) and dicalcium phosphate anhydrous (DCPA, CaHPO4) in equimolar ratio (1/1) with aqueous solutions of acetic acid (C2H4O2) and disodium hydrogen phosphate dehydrate (Na2HPO4.2H2O) in combination with sodium alginate in order to improve theirs moldable characteristic. The concentration of the aqueous solutions and sodium alginate were varied to investigate the effect of different aqueous solutions and alginate on properties of the cements. The cement paste was prepared by mixing cement powder (P) with aqueous solution (L) in a P/L ratio of 1.0g/0.35ml. X-ray diffraction (XRD) was used to analyses phase formation of the cements. Setting time and compressive strength of the set CPCs were measured using the Gilmore apparatus and Universal testing machine, respectively. The results showed that CPCs could be produced by using both basic (Na2HPO4.2H2O) and acidic (C2H4O2) solutions. XRD results show the precipitation of hydroxyapatite in all cement samples. No change in phase formation among cements using difference concentrations of Na2HPO4.2H2O solutions. With increasing concentration of acidic solutions, samples obtained less hydroxyapatite with a high dicalcium phosphate dehydrate leaded to a shorter setting time. Samples with sodium alginate exhibited higher crystallization of hydroxyapatite than that of without alginate as a result of shorten setting time in a basic solution but a longer setting time in an acidic solution. The stronger cement was attained from samples using the acidic solution with sodium alginate; however the strength was lower than that of using the basic solution.

Keywords: Calcium phosphate cements, TTCP, DCPA, hydroxyapatite, properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2548
69 The Study of the Interaction between Catanionic Surface Micelle SDS-CTAB and Insulin at Air/Water Interface

Authors: B. Tah, P. Pal, M. Mahato, R. Sarkar, G. B. Talapatra

Abstract:

Herein, we report the different types of surface morphology due to the interaction between the pure protein Insulin (INS) and catanionic surfactant mixture of Sodium Dodecyl Sulfate (SDS) and Cetyl Trimethyl Ammonium Bromide (CTAB) at air/water interface obtained by the Langmuir-Blodgett (LB) technique. We characterized the aggregations by Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM) and Fourier transform infrared spectroscopy (FTIR) in LB films. We found that the INS adsorption increased in presence of catanionic surfactant at air/water interface. The presence of small amount of surfactant induces two-stage growth kinetics due to the pure protein absorption and protein-catanionic surface micelle interaction. The protein remains in native state in presence of small amount of surfactant mixture. Smaller amount of surfactant mixture with INS is producing surface micelle type structure. This may be considered for drug delivery system. On the other hand, INS becomes unfolded and fibrillated in presence of higher amount of surfactant mixture. In both the cases, the protein was successfully immobilized on a glass substrate by the LB technique. These results may find applications in the fundamental science of the physical chemistry of surfactant systems, as well as in the preparation of drug-delivery system.

Keywords: Air/water interface, Catanionic micelle, Insulin, Langmuir-Blodgett film

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2459
68 Gene Expressions Associated with Ultrastructural Changes in Vascular Endothelium of Atherosclerotic Lesion

Authors: M. Maimunah, G.A. Froemming, H. Nawawi, M.I. Nafeeza, O. Effat, M.R. Rohayu Izanwati, M.S. Mohamed Saifulaman

Abstract:

Attachment of the circulating monocytes to the endothelium is the earliest detectable events during formation of atherosclerosis. The adhesion molecules, chemokines and matrix proteases genes were identified to be expressed in atherogenesis. Expressions of these genes may influence structural integrity of the luminal endothelium. The aim of this study is to relate changes in the ultrastructural morphology of the aortic luminal surface and gene expressions of the endothelial surface, chemokine and MMP-12 in normal and hypercholesterolemic rabbits. Luminal endothelial surface from rabbit aortic tissue was examined by scanning electron microscopy (SEM) using low vacuum mode to ascertain ultrastructural changes in development of atherosclerotic lesion. Gene expression of adhesion molecules, MCP-1 and MMP-12 were studied by Real-time PCR. Ultrastructural observations of the aortic luminal surface exhibited changes from normal regular smooth intact endothelium to irregular luminal surface including marked globular appearance and ruptures of the membrane layer. Real-time PCR demonstrated differentially expressed of studied genes in atherosclerotic tissues. The appearance of ultrastructural changes in aortic tissue of hypercholesterolemic rabbits is suggested to have relation with underlying changes of endothelial surface molecules, chemokine and MMP-12 gene expressions.

Keywords: Ultrastructure of luminal endothelial surface, Macrophage metalloelastase (MMP-12), Real-time PCR.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1536
67 Tool Wear of Aluminum/Chromium/Tungsten-Based-Coated Cemented Carbide Tools in Cutting Sintered Steel

Authors: Tadahiro Wada, Hiroyuki Hanyu

Abstract:

In this study, to clarify the effectiveness of an aluminum/chromium/tungsten-based-coated tool for cutting sintered steel, tool wear was experimentally investigated. The sintered steel was turned with the (Al60,Cr25,W15)N-, (Al60,Cr25,W15)(C,N)- and (Al64,Cr28,W8)(C,N)-coated cemented carbide tools according to the physical vapor deposition (PVD) method. Moreover, the tool wear of the aluminum/chromium/tungsten-based-coated item was compared with that of the (Al,Cr)N coated tool. Furthermore, to clarify the tool wear mechanism of the aluminum/chromium/tungsten-coating film for cutting sintered steel, Scanning Electron Microscope observation and Energy Dispersive x-ray Spectroscopy mapping analysis were conducted on the abraded surface. The following results were obtained: (1) The wear progress of the (Al64,Cr28,W8)(C,N)-coated tool was the slowest among that of the five coated tools. (2) Adding carbon (C) to the aluminum/chromium/tungsten-based-coating film was effective for improving the wear-resistance. (3) The main wear mechanism of the (Al60,Cr25,W15)N-, the (Al60,Cr25,W15)(C,N)- and the (Al64,Cr28,W8)(C,N)-coating films was abrasive wear.

Keywords: Cutting, physical vapor deposition coating method, tool wear, tool wear mechanism, sintered steel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1643
66 A Highly Efficient Process Applying Sige Film to Generate Quasi-Beehive Si Nanostructure for the Growth of Platinum Nanopillars with High Emission Property for the Applications of X-Ray Tube

Authors: Pin-Hsu Kao, Wen-Shou Tseng, Hung-Ming Tai, Yuan-Ming Chang, Jenh-Yih Juang

Abstract:

We report a lithography-free approach to fabricate the biomimetics, quasi-beehive Si nanostructures (QBSNs), on Si-substrates. The self-assembled SiGe nanoislands via the strain induced surface roughening (Asaro-Tiller-Grinfeld instability) during in-situ annealing play a key role as patterned sacrifice regions for subsequent reactive ion etching (RIE) process performed for fabricating quasi-beehive nanostructures on Si-substrates. As the measurements of field emission, the bare QBSNs show poor field emission performance, resulted from the existence of the native oxide layer which forms an insurmountable barrier for electron emission. In order to dramatically improve the field emission characteristics, the platinum nanopillars (Pt-NPs) were deposited on QBSNs to form Pt-NPs/QBSNs heterostructures. The turn-on field of Pt-NPs/QBSNs is as low as 2.29 V/μm (corresponding current density of 1 μA/cm2), and the field enhancement factor (β-value) is significantly increased to 6067. More importantly, the uniform and continuous electrons excite light emission, due to the surrounding filed emitters from Pt-NPs/QBSNs, can be easily obtained. This approach does not require an expensive photolithographic process and possesses great potential for applications.

Keywords: Biomimetics, quasi-beehive Si, SiGe nanoislands, platinum nanopillars, field emission.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1770
65 Profile Controlled Gold Nanostructures Fabricated by Nanosphere Lithography for Localized Surface Plasmon Resonance

Authors: Xiaodong Zhou, Nan Zhang

Abstract:

Localized surface plasmon resonance (LSPR) is the coherent oscillation of conductive electrons confined in noble metallic nanoparticles excited by electromagnetic radiation, and nanosphere lithography (NSL) is one of the cost-effective methods to fabricate metal nanostructures for LSPR. NSL can be categorized into two major groups: dispersed NSL and closely pack NSL. In recent years, gold nanocrescents and gold nanoholes with vertical sidewalls fabricated by dispersed NSL, and silver nanotriangles and gold nanocaps on silica nanospheres fabricated by closely pack NSL, have been reported for LSPR biosensing. This paper introduces several novel gold nanostructures fabricated by NSL in LSPR applications, including 3D nanostructures obtained by evaporating gold obliquely on dispersed nanospheres, nanoholes with slant sidewalls, and patchy nanoparticles on closely packed nanospheres, all of which render satisfactory sensitivity for LSPR sensing. Since the LSPR spectrum is very sensitive to the shape of the metal nanostructures, formulas are derived and software is developed for calculating the profiles of the obtainable metal nanostructures by NSL, for different nanosphere masks with different fabrication conditions. The simulated profiles coincide well with the profiles of the fabricated gold nanostructures observed under scanning electron microscope (SEM) and atomic force microscope (AFM), which proves that the software is a useful tool for the process design of different LSPR nanostructures.

Keywords: Nanosphere lithography, localized surface plasmonresonance, biosensor, simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1867
64 Effect of Formulation Compositions on Particle Size and Zeta Potential of Diclofenac Sodium-Loaded Chitosan Nanoparticles

Authors: Rathapon Asasutjarit, Chayanid Sorrachaitawatwong, Nardauma Tipchuwong, Sirijit Pouthai

Abstract:

This study was conducted to formulate diclofenac sodium-loaded chitosan nanoparticles and to study the effect of formulation compositions on particle size and zeta potential of chitosan nanoparticles (CSN) containing diclofenac sodium (DC) prepared by ionotropic gelation method. It was found that the formulations containing chitosan, DC and tripolyphosphate (TPP) at a weight ratio of 4:1:1, respectively, with various pH provided various systems. At pH 5.0 and 6.0, the obtained systems were turbid because of precipitation of DC and chitosan, respectively. However, the dispersed system of CSN possessing diameter of 108±1 nm and zeta potential of 19±1 mV could be obtained at pH 5.5. These CSN also showed spherical morphology observed via a transmission scanning electron microscope. Change in weight ratio of chitosan:DC:TPP i.e. 1:1:1, 2:1:1, 3:1:1 and 4:1:1 showed that these ratios led to precipitation of particles except for the ratio of 4:1:1 providing CSN properly. The effect of Tween 80 as a stabilizer was also determined. It suggested that increment of Tween 80 concentration to 0.02% w/v could stabilize CSN at least 48 hours. However, increment of Tween 80 to 0.03% w/v led to quick precipitation of particles. The study of effect of TPP suggested that increment of TPP concentration increased particle size but decreased zeta potential. The excess TPP caused precipitation of CSN. Therefore, the optimized CSN was the CSN containing chitosan, DC and TPP at the ratio of 4:1:1and 0.02% w/v Tween 80 prepared at pH 5.5. Their particle size, zeta potential and entrapment efficiency were 128±1 nm, 15±1 mV and 45.8±2.6%, respectively.

Keywords: Chitosan nanoparticles, diclofenac sodium, size, zeta potential.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4506
63 Pyrite from Zones of Mz-Kz Reactivation of Large Faults on the Eastern Slope of the Ural Mountains, Russia

Authors: O. B. Azovskova, А. А. Malyugin, А. А. Nekrasova, M. Yu. Yanchenko

Abstract:

Pyritisation halos are identified in weathering crusts and unconsolidated formations at five locations within large fault structure of the Urals’ eastern slope. Electron microscopy reveals the presence of inclusions and growths on pyrite faces – normally on cubic pyrite with striations, or combinations of cubes and other forms. Following neogenesis types are established: native elements and intermetallic compounds (including gold and silver), halogenides, sulphides, sulfosalts, tellurides, sulphotellurides, selenides, tungstates, sulphates, phosphates, carbon-based substances. Direct relationship is noted between amount and diversity of such mineral phases, and proximity to and scale of ore-grade mineralization. Gold and silver, both in native form and within tellurides, presence of lead (galena, native lead), native tungsten, and, possibly, molybdenite and sulfosalts can indicate gold-bearing formations. First find of native tungsten in the Urals is for the first time – in crystallised and druse-like form. Link is suggested between unusual mineralization and “reducing” hydrothermal fluids from deep-seated faults at later stages of Urals’ reactivation. 

Keywords: Gold in weathering crust, low temperature metasomatism, pyrite, native tungsten, Urals.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1523
62 Removal of Ni(II), Zn(II) and Pb(II) ions from Single Metal Aqueous Solution using Activated Carbon Prepared from Rice Husk

Authors: Mohd F. Taha, Chong F. Kiat, Maizatul S. Shaharun, Anita Ramli

Abstract:

The abundance and availability of rice husk, an agricultural waste, make them as a good source for precursor of activated carbon. In this work, rice husk-based activated carbons were prepared via base treated chemical activation process prior the carbonization process. The effect of carbonization temperatures (400, 600 and 800oC) on their pore structure was evaluated through morphology analysis using scanning electron microscope (SEM). Sample carbonized at 800oC showed better evolution and development of pores as compared to those carbonized at 400 and 600oC. The potential of rice husk-based activated carbon as an alternative adsorbent was investigated for the removal of Ni(II), Zn(II) and Pb(II) from single metal aqueous solution. The adsorption studies using rice husk-based activated carbon as an adsorbent were carried out as a function of contact time at room temperature and the metal ions were analyzed using atomic absorption spectrophotometer (AAS). The ability to remove metal ion from single metal aqueous solution was found to be improved with the increasing of carbonization temperature. Among the three metal ions tested, Pb(II) ion gave the highest adsorption on rice husk-based activated carbon. The results obtained indicate the potential to utilize rice husk as a promising precursor for the preparation of activated carbon for removal of heavy metals.

Keywords: Activated carbon, metal ion adsorption, rice husk, wastewater treatment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2695
61 Investigation of the Surface Features of the Jupiter’s Galilean Moons

Authors: Revaz Chigladze

Abstract:

The purpose of the research is to investigate the surfaces of Jupiter's Galilean moons (satellites), namely to identify which moon has the most uniform surface among them, what is the difference between the front (in the direction of motion) and the back sides of each moon's surface, as well as the temporal variations of the moons. Since 1981, the E. Kharadze Georgian National Astrophysical Observatory has been conducting polarimetric (P) and photometric (M) observations of Jupiter's Galilean moons with telescopes of different diameters (40-cm and 125-cm), as well as polarimeter Automatic Scanning Electron Polarimeter (ASEP)-78, the latest generation photometer with polarimeter and modern light receiver Santana Barbara Instrument Group (SBIG). As it turns out from the analysis of the observed material, parameters P and M depend on: α, the phase angle of the moon (satellite); L, the orbital latitude of the moon (satellite); λ, the wavelength, and t, the period of observation, i.e., P = P (α, L, λ, t), and similarly: M = M (α, L, λ, t). Based on the analysis of the obtained results, we get: The magnitude of the degree of polarization of Jupiter's Galilean moons near the opposition significantly differs from zero. Europa appears to have the most uniform surface, and Callisto has the least. Time variations are most characteristic of Io, which confirms the presence of volcanic activity on its surface. Based on the observed materials, it can be seen that the intensity of light reflected from the front hemisphere of the first three moons: Io, Europa, and Ganymede, is less than the intensity of light reflected from the rear hemisphere, while the picture with Callisto is opposite. The paper provides an explanation of this fact.

Keywords: Galilean moons, polarization, degree of polarization, photometry, front and rear hemispheres.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 95
60 Deposition Rate and Energy Enhancements of TiN Thin-Film in a Magnetized Sheet Plasma Source

Authors: Hamdi Muhyuddin D. Barra, Henry J. Ramos

Abstract:

Titanium nitride (TiN) has been synthesized using the sheet plasma negative ion source (SPNIS). The parameters used for its effective synthesis has been determined from previous experiments and studies. In this study, further enhancement of the deposition rate of TiN synthesis and advancement of the SPNIS operation is presented. This is primarily achieved by the addition of Sm-Co permanent magnets and a modification of the configuration in the TiN deposition process. The magnetic enhancement is aimed at optimizing the sputtering rate and the sputtering yield of the process. The Sm-Co permanent magnets are placed below the Ti target for better sputtering by argon. The Ti target is biased from –250V to – 350V and is sputtered by Ar plasma produced at discharge current of 2.5–4A and discharge potential of 60–90V. Steel substrates of dimensions 20x20x0.5mm3 were prepared with N2:Ar volumetric ratios of 1:3, 1:5 and 1:10. Ocular inspection of samples exhibit bright gold color associated with TiN. XRD characterization confirmed the effective TiN synthesis as all samples exhibit the (200) and (311) peaks of TiN and the non-stoichiometric Ti2N (220) facet. Cross-sectional SEM results showed increase in the TiN deposition rate of up to 0.35μm/min. This doubles what was previously obtained [1]. Scanning electron micrograph results give a comparative morphological picture of the samples. Vickers hardness results gave the largest hardness value of 21.094GPa.

Keywords: Chemical vapor deposition, Magnetized sheetplasma, Thin-film synthesis, Titanium nitride.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1644
59 Reinforcement of Calcium Phosphate Cement with E-Glass Fibre

Authors: Sudip Dasgupta, Debosmita Pani, Kanchan Maji

Abstract:

Calcium Phosphate Cement (CPC) due to its high bioactivity and optimum bioresorbability shows excellent bone regeneration capability. Despite it has limited applications as bone implant due to its macro-porous microstructure causing its poor mechanical strength. The reinforcement of apatitic CPCs with biocompatible fibre glass phase is an attractive area of research to improve upon its mechanical strength. Here, we study the setting behaviour of Si-doped and un-doped α tri calcium phosphate (α - TCP) based CPC and its reinforcement with addition of E-glass fibre. Alpha Tri calcium phosphate powders were prepared by solid state sintering of CaCO3 , CaHPO4 and Tetra Ethyl Ortho Silicate (TEOS) was used as silicon source to synthesize Si doped α-TCP powders. Both initial and final setting time of the developed cement was delayed because of Si addition. Crystalline phases of HA (JCPDS 9- 432), α-TCP (JCPDS 29-359) and β-TCP (JCPDS 9-169) were detected in the X-ray diffraction (XRD) pattern after immersion of CPC in simulated body fluid (SBF) for 0 hours to 10 days. As Si incorporation in the crystal lattice stabilized the TCP phase, Si doped CPC showed little slower rate of conversion into HA phase as compared to un-doped CPC. The SEM image of the microstructure of hardened CPC showed lower grain size of HA in un-doped CPC because of premature setting and faster hydrolysis of un-doped CPC in SBF as compared that in Si-doped CPC. Premature setting caused generation of micro and macro porosity in un-doped CPC structure which resulted in its lower mechanical strength as compared to that in Si-doped CPC. It was found that addition of 10 wt% of E-glass fibre into Si-doped α-TCP increased the average DTS of CPC from 8 MPa to 15 MPa as the fibres could resists the propagation of crack by deflecting the crack tip. Our study shows that biocompatible E-glass fibre in optimum proportion in CPC matrix can enhance the mechanical strength of CPC without affecting its biocompatibility. 

Keywords: Calcium phosphate cement, biocompatibility, e-glass fibre, diametral tensile strength.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2191
58 The Potential of Tempo-Oxidized Cellulose Nanofibers to Replace Ethylene-Propylene-Diene Monomer Rubber

Authors: S. Dikmen Kucuk, A. Tozluoglu, Y. Guner

Abstract:

In recent years, petroleum-based polymers began to be limited due to effects on human and environmental point of view in many countries. Thus, organic-based biodegradable materials have attracted much interest in the composite industry because of environmental concerns. As a result of this, it has been asked that inorganic and petroleum-based materials should be reduced and altered with biodegradable materials. In this point, in this study, it is aimed to investigate the potential of use of TEMPO (2,2,6,6- tetramethylpiperidine 1-oxyl)-mediated oxidation nano-fibrillated cellulose instead of EPDM (ethylene-propylene-diene monomer) rubber, which is a petroleum-based material. Thus, the exchange of petroleum-based EPDM rubber with organic based cellulose nanofibers, which are environmentally friendly (green) and biodegradable, will be realized. The effect of tempo-oxidized cellulose nanofibers (TCNF) instead of EPDM rubber was analyzed by rheological, mechanical, chemical, thermal and aging analyses. The aged surfaces were visually scrutinized and surface morphological changes were examined via scanning electron microscopy (SEM). The results obtained showed that TEMPO oxidation nano-fibrillated cellulose can be used at an amount of 1.0 and 2.2 phr resulting the values stay within tolerance according to customer standard and without any chemical degradation, crack, colour change or staining.

Keywords: EPDM, cellulose, green materials, nanofibrillated cellulose, TCNF, tempo-oxidized nanofiber.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 925
57 Post Elevated Temperature Effect on the Strength and Microstructure of Thin High Performance Cementitious Composites (THPCC)

Authors: A. Q. Sobia, A. Shyzleen, M. S. Hamidah, I. Azmi, S. F. A. Rafeeqi, S. Ahmad

Abstract:

Reinforced Concrete (RC) structures strengthened with fiber reinforced polymer (FRP) lack in thermal resistance under elevated temperatures in the event of fire. This phenomenon led to the lining of strengthened concrete with thin high performance cementitious composites (THPCC) to protect the substrate against elevated temperature. Elevated temperature effects on THPCC, based on different cementitious materials have been studied in the past but high-alumina cement (HAC)-based THPCC have not been well characterized. This research study will focus on the THPCC based on HAC replaced by 60%, 70%, 80% and 85% of ground granulated blast furnace slag (GGBS). Samples were evaluated by the measurement of their mechanical strength (28 & 56 days of curing) after exposed to 400°C, 600°C and 28°C of room temperature for comparison and corroborated by their microstructure study. Results showed that among all mixtures, the mix containing only HAC showed the highest compressive strength after exposed to 600°C as compared to other mixtures. However, the tensile strength of THPCC made of HAC and 60% GGBS content was comparable to the THPCC with HAC only after exposed to 600°C. Field emission scanning electron microscopy (FESEM) images of THPCC accompanying Energy Dispersive X-ray (EDX) microanalysis revealed that the microstructure deteriorated considerably after exposure to elevated temperatures which led to the decrease in mechanical strength.

Keywords: Ground granulated blast furnace slag, high aluminacement, microstructure at elevated temperature and residual strength.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2339
56 Formation of Protective Aluminum-Oxide Layer on the Surface of Fe-Cr-Al Sintered-Metal-Fibers via Multi-Stage Thermal Oxidation

Authors: Loai Ben Naji, Osama M. Ibrahim, Khaled J. Al-Fadhalah

Abstract:

The objective of this paper is to investigate the formation and adhesion of a protective aluminum-oxide (Al2O3, alumina) layer on the surface of Iron-Chromium-Aluminum Alloy (Fe-Cr-Al) sintered-metal-fibers. The oxide-scale layer was developed via multi-stage thermal oxidation at 930 oC for 1 hour, followed by 1 hour at 960 oC, and finally at 990 oC for 2 hours. Scanning Electron Microscope (SEM) images show that the multi-stage thermal oxidation resulted in the formation of predominantly Al2O3 platelets-like and whiskers. SEM images also reveal non-uniform oxide-scale growth on the surface of the fibers. Furthermore, peeling/spalling of the alumina protective layer occurred after minimum handling, which indicates weak adhesion forces between the protective layer and the base metal alloy.  Energy Dispersive Spectroscopy (EDS) analysis of the heat-treated Fe-Cr-Al sintered-metal-fibers confirmed the high aluminum content on the surface of the protective layer, and the low aluminum content on the exposed base metal alloy surface. In conclusion, the failure of the oxide-scale protective layer exposes the base metal alloy to further oxidation, and the fragile non-uniform oxide-scale is not suitable as a support for catalysts.

Keywords: High-temperature oxidation, alumina protective layer, iron-chromium-aluminum alloy, sintered-metal-fibers.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 866
55 The Effects of Increasing Unsaturation in Palm Oil and Incorporation of Carbon Nanotubes on Resinous Properties

Authors: Muhammad R. Islam, Mohammad Dalour H. Beg, Saidatul S. Jamari

Abstract:

Considering palm oil as non-drying oil owing to its low iodine value, an attempt was taken to increase the unsaturation in the fatty acid chains of palm oil for the preparation of alkyds. To increase the unsaturation in the palm oil, sulphuric acid (SA) and para-toluene sulphonic acid (PTSA) was used prior to alcoholysis for the dehydration process. The iodine number of the oil samples was checked for the unsaturation measurement by Wijs method. Alkyd resin was prepared using the dehydrated palm oil by following alcoholysis and esterification reaction. To improve the film properties 0.5wt.% multi-wall carbon nano tubes (MWCNTs) were used to manufacture polymeric film. The properties of the resins were characterized by various physico-chemical properties such as density, viscosity, iodine value, saponification value, etc. Structural elucidation was confirmed by Fourier transform of infrared spectroscopy and proton nuclear magnetic resonance; surfaces of the films were examined by field-emission scanning electron microscope. In addition, pencil hardness and chemical resistivity was also measured by using standard methods. The effect of enhancement of the unsaturation in the fatty acid chain found significant and motivational. The resin prepared with dehydrated palm oil showed improved properties regarding hardness and chemical resistivity testing. The incorporation of MWCNTs enhanced the thermal stability and hardness of the films as well.

Keywords: Alkyd resin, nano-coatings, dehydration, palm oil.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2421
54 Contamination of Organochlorine Pesticides in Nest Soil, Egg, and Blood of the Snail-eating Turtle (Malayemys macrocephala) from the Chao Phraya River Basin, Thailand

Authors: Sarun Keithmaleesatti, Pakorn Varanusupakul, Wattasit Siriwong, Kumthorn Thirakhupt, Mark Robson, Noppadon Kitana

Abstract:

Organochlorine pesticides (OCPs) are known to be persistent and bioaccumulative toxicants that may cause reproductive impairments in wildlife as well as human. The current study uses the snail-eating turtle Malayemys macrocephala, a long-lived animal commonly distribute in rice field habitat in central part of Thailand, as a sentinel to monitor OCP contamination in environment. The nest soil, complete clutch of eggs, and blood of the turtle were collected from agricultural areas in the Chao Phraya River Basin, Thailand during the nesting season of 2007-2008. The novel methods for tissue extraction by an accelerated solvent extractor (ASE, for egg) and liquid-liquid extraction (for blood) have been developed. The nineteen OCP residues were analyzed by gas chromatography with micro-electron captured detector (GC-μECD). The validated methods have met requirements of the AOAC standard. The results indicated that significant amounts of OCPs are still contaminated in nest soil and eggs of the turtle even though the OCPs had been banned in this area for many years. This suggested the potential risk to health of wildlife as well as human in the area.

Keywords: Gas chromatography, persistent organic pollutants, rice field, sentinel species.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1794
53 Investigation on the Antimicrobial Effect of Ammonyx on Some Pathogenic Microbes Observed on Sweatshirt Sport

Authors: A. Ashjaran, R. Ghazi-saeidi, E. Yazdanshenas, A. Rashidi

Abstract:

In this research, the main aim is to investigate the antimicrobial effectiveness of ammonyx solutions finishing on Sweatshirt Sport with immersion method. 60 Male healthy subjects (football player) participated in this study. They were dressed in a Sweatshirt for 14 days and some microbes found on them were investigated. The antimicrobial effect of different ammonyx solutions(1/100, 1/500, 1/1000, 1/2000 v/v solutions of Ammonyx) on the identified microbes was studied by the zone inhabitation method in vitro. In the next step the Sweatshirt Sports were treated with the same different solutions of ammonyx and the antimicrobial effectiveness was assessed by colony count method in different times and the results were compared whit untreated ones. Some mechanical properties of treated cotton/polyester yarn that used in Sweatshirt Sport were measured after 30 days and were compared with untreated one. Finally after finishing, scanning electron microscopy (SEM) was used to compare the surfaces of the finished and unfinished specimens. The results showed the presence of five pathogenic microbes on Sweatshirt Sports such as Escherichia coli, Staphylococcus aureus, Aspergillus, Mucor and Candida. The inhalation time for treated on Sweatshirt Sports improved. The amount of colony growth on treated clothes reduced considerably and moreover the mechanical tests results showed no significant deterioration effect of studies properties in comparison to the untreated yarn. The visual examination of the SEM indicated that the antimicrobial treatments were applied usefully to fabrics.

Keywords: Pathogenic microbes, Sweatshirt Sports, Ammonyx, antimicrobial treatment

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1916