WASET
	%0 Journal Article
	%A Pin-Hsu Kao and  Wen-Shou Tseng and  Hung-Ming Tai and  Yuan-Ming Chang and  Jenh-Yih Juang
	%D 2012
	%J International Journal of Materials and Metallurgical Engineering
	%B World Academy of Science, Engineering and Technology
	%I Open Science Index 71, 2012
	%T A Highly Efficient Process Applying Sige Film to Generate Quasi-Beehive Si Nanostructure for the Growth of Platinum Nanopillars with High Emission Property for the Applications of X-Ray Tube
	%U https://publications.waset.org/pdf/3773
	%V 71
	%X We report a lithography-free approach to fabricate the
biomimetics, quasi-beehive Si nanostructures (QBSNs), on
Si-substrates. The self-assembled SiGe nanoislands via the strain
induced surface roughening (Asaro-Tiller-Grinfeld instability) during
in-situ annealing play a key role as patterned sacrifice regions for
subsequent reactive ion etching (RIE) process performed for
fabricating quasi-beehive nanostructures on Si-substrates. As the
measurements of field emission, the bare QBSNs show poor field
emission performance, resulted from the existence of the native oxide
layer which forms an insurmountable barrier for electron emission. In
order to dramatically improve the field emission characteristics, the
platinum nanopillars (Pt-NPs) were deposited on QBSNs to form
Pt-NPs/QBSNs heterostructures. The turn-on field of Pt-NPs/QBSNs
is as low as 2.29 V/μm (corresponding current density of 1 μA/cm2),
and the field enhancement factor (β-value) is significantly increased to
6067. More importantly, the uniform and continuous electrons excite
light emission, due to the surrounding filed emitters from
Pt-NPs/QBSNs, can be easily obtained. This approach does not require
an expensive photolithographic process and possesses great potential
for applications.
	%P 1040 - 1044