A Highly Efficient Process Applying Sige Film to Generate Quasi-Beehive Si Nanostructure for the Growth of Platinum Nanopillars with High Emission Property for the Applications of X-Ray Tube
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33122
A Highly Efficient Process Applying Sige Film to Generate Quasi-Beehive Si Nanostructure for the Growth of Platinum Nanopillars with High Emission Property for the Applications of X-Ray Tube

Authors: Pin-Hsu Kao, Wen-Shou Tseng, Hung-Ming Tai, Yuan-Ming Chang, Jenh-Yih Juang

Abstract:

We report a lithography-free approach to fabricate the biomimetics, quasi-beehive Si nanostructures (QBSNs), on Si-substrates. The self-assembled SiGe nanoislands via the strain induced surface roughening (Asaro-Tiller-Grinfeld instability) during in-situ annealing play a key role as patterned sacrifice regions for subsequent reactive ion etching (RIE) process performed for fabricating quasi-beehive nanostructures on Si-substrates. As the measurements of field emission, the bare QBSNs show poor field emission performance, resulted from the existence of the native oxide layer which forms an insurmountable barrier for electron emission. In order to dramatically improve the field emission characteristics, the platinum nanopillars (Pt-NPs) were deposited on QBSNs to form Pt-NPs/QBSNs heterostructures. The turn-on field of Pt-NPs/QBSNs is as low as 2.29 V/μm (corresponding current density of 1 μA/cm2), and the field enhancement factor (β-value) is significantly increased to 6067. More importantly, the uniform and continuous electrons excite light emission, due to the surrounding filed emitters from Pt-NPs/QBSNs, can be easily obtained. This approach does not require an expensive photolithographic process and possesses great potential for applications.

Keywords: Biomimetics, quasi-beehive Si, SiGe nanoislands, platinum nanopillars, field emission.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1330931

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1802

References:


[1] A. Shalav, B. S. Richards, and M. A. Green, Sol. Energ. Mat. Sol. C. 91 (2007) 829-842.
[2] B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang and C. M. Lieber, Nature 449 (2007) 885-890.
[3] C. K. Chan, H. Peng, G. Liu, K. Mcilerath, X. F. Zhang, R. A. Huggins and Y. Cui, Nat. Nanotech. 3 (2008) 31-35.
[4] Y. L. Bunimovich, Y. S. Shin, W.-S. Yeo, M. Amori, G. Kwong, and J. R. Heath, J. Am. Chem. Soc. 128 (2006) 16323-16331.
[5] Z. Li, Y. Chen, X. Li, T. I. Kamins, K. Nauka, and R. S. Williams, Nano Lett. 4 (2004) 245-247.
[6] C. T. Black, Appl. Phys. Lett. 87 (2005) 163116-1-3.
[7] Y. Cui, Z. Zhong, D. Wang, W. U. Wang, and C. M. Lieber, Nano Lett. 3 (2003) 149-152.
[8] Y. Yang, G. Meng, X. Liu, L. Zhang, Z. Hu, C. He, and Y. Hu, J. Phys. Chem. C 112 (2008) 20126-20130.
[9] H. Chi, H.-C. Zhu, H.-J. Xu, X.-D. Shan, Z.-M. Liao, and D.-P. Yu, J. Phys. Chem. C 113 (2009) 6450-6453.
[10] Y.-M. Chang, C.-L. Dai, T.-C. Cheng, C.-W. Hsu, Thin Solid Films 518 (2010) 3782-3785.
[11] Y.-M. Chang, S.-R. Jian and J.-Y. Juang, Nanoscale Res. Lett. 5 (2010) 1456-1463.
[12] S. Zheng, M. Mori, T. Tambo, C. Tatsuyama, J. Mater. Sci. 42 (2007) 5312-5317.
[13] S. Zheng, M. Kawashima, M. Mori, T. Tambo, C. Tatsuyama, Thin Solid Films 508 (2006) 156-159.
[14] Y. B. Li, Y. Bando, and D. Golberg, Appl. Phys. Lett. 84 (2004) 3603-3605.
[15] S. K. Marathe,P. M. Koinkar, S. S. Ashtaputre, M. A. More, S. W. Gosavi,D. S. Joag, and S. K. Kulkarni, Nanotechnology 17 (2006) 1932-1936.
[16] X. Wang, J. Zhou, C. Lao, J. Song, N. Xu, and Z. L. Wang, Adv. Mater. 19 (2007) 1627-1631.
[17] B. Cao, X. Teng, S. H. Heo, Y. Li, S. O. Cho, G. Li, and W. Cai, J. Phys. Chem. C 111 (2007) 2470-2476.
[18] Y.-K. Tseng, C.-J. Huang, H.-M. Cheng, I-N. Lin, K.-S. Liu, and I-C. Chen, Adv. Funct. Mater. 13 (2003) 811-814.
[19] R. T. R. Kumar, E. McGlynn, C. McLoughlin, S. Chakrabarti, R. CSmith, J. D. Carey, J. P. Mosnier, and M. O. Henry, Nanotechnology 18 (2007) 215704-215709.
[20] Y.-M. Chang, M.-C. Liu, P.-H. Kao, C.-M. Lin, H.-Y. Lee and J.-Y. Juang, ACS Appl. Mater. Interfaces 4 (2012) 1411-1416.
[21] Y.-M. Chang, J.-M. Huang, C.-M. Lin, H.-Y.Lee, S.-Y. Chen, and J.-Y.Juang, J. Phys. Chem. C 116 (2012) 8332-8337.
[22] V. S. Kale, R. R. Prabhakar, S. S. Pramana, M. Rao, C.-H. Sow, K. B. Jinesh, and S. G. Mhaisalkar, Phys. Chem. Chem. Phys. 14 (2012) 4614-4619.
[23] Y. Liu, L. Liao, J. Li, and C. Pan, J. Phys. Chem. C 111 (2007) 5050-5056.
[24] Y.-F. Tzeng, H.-C. Wu, P.-S. Sheng, N.-H. Tai, H. T. Chiu, C. Y. Lee, I-N. Lin, ACS Appl. Mater. Interfaces 2 (2010) 331-334.