%0 Journal Article
	%A Hamdi Muhyuddin D. Barra and  Henry J. Ramos
	%D 2011
	%J International Journal of Materials and Metallurgical Engineering
	%B World Academy of Science, Engineering and Technology
	%I Open Science Index 50, 2011
	%T Deposition Rate and Energy Enhancements of TiN Thin-Film in a Magnetized Sheet Plasma Source
	%U https://publications.waset.org/pdf/5984
	%V 50
	%X Titanium nitride (TiN) has been synthesized using the
sheet plasma negative ion source (SPNIS). The parameters used for
its effective synthesis has been determined from previous
experiments and studies. In this study, further enhancement of the
deposition rate of TiN synthesis and advancement of the SPNIS
operation is presented. This is primarily achieved by the addition of
Sm-Co permanent magnets and a modification of the configuration in
the TiN deposition process. The magnetic enhancement is aimed at
optimizing the sputtering rate and the sputtering yield of the process.
The Sm-Co permanent magnets are placed below the Ti target for
better sputtering by argon. The Ti target is biased from –250V to –
350V and is sputtered by Ar plasma produced at discharge current of
2.5–4A and discharge potential of 60–90V. Steel substrates of
dimensions 20x20x0.5mm3 were prepared with N2:Ar volumetric
ratios of 1:3, 1:5 and 1:10. Ocular inspection of samples exhibit
bright gold color associated with TiN. XRD characterization
confirmed the effective TiN synthesis as all samples exhibit the (200)
and (311) peaks of TiN and the non-stoichiometric Ti2N (220) facet.
Cross-sectional SEM results showed increase in the TiN deposition
rate of up to 0.35μm/min. This doubles what was previously obtained
[1]. Scanning electron micrograph results give a comparative
morphological picture of the samples. Vickers hardness results gave
the largest hardness value of 21.094GPa.
	%P 114 - 116