Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 31103
Ab initio Study of Co2ZrGe and Co2NbB Full Heusler Compounds

Authors: Abada Ahmed, Hiadsi Said, Ouahrani Tarik, Amrani Bouhalouane, Amara Kadda


Using the first-principles full-potential linearized augmented plane wave plus local orbital (FP-LAPW+lo) method based on density functional theory (DFT), we have investigated the electronic structure and magnetism of full Heusler alloys Co2ZrGe and Co2NbB. These compounds are predicted to be half-metallic ferromagnets (HMFs) with a total magnetic moment of 2.000 B per formula unit, well consistent with the Slater-Pauling rule. Calculations show that both the alloys have an indirect band gaps, in the minority-spin channel of density of states (DOS), with values of 0.58 eV and 0.47 eV for Co2ZrGe and Co2NbB, respectively. Analysis of the DOS and magnetic moments indicates that their magnetism is mainly related to the d-d hybridization between the Co and Zr (or Nb) atoms. The half-metallicity is found to be relatively robust against volume changes. In addition, an atom inside molecule AIM formalism and an electron localization function ELF were also adopted to study the bonding properties of these compounds, building a bridge between their electronic and bonding behavior. As they have a good crystallographic compatibility with the lattice of semiconductors used industrially and negative calculated cohesive energies with considerable absolute values these two alloys could be promising magnetic materials in the spintronic field.

Keywords: Magnetic Properties, Electronic Properties, full Heusler alloys, halfmetallic ferromagnets

Digital Object Identifier (DOI):

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2161


[1] A. Prinz, Science 282 (1998)1660.
[2] S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molnar, M. L. Roukes, A. Y. Chtchelkanova, and D. M. Treger, Science 294 (2001) 1488.
[3] W. E. Pickett and J. S. Moodera, Physics Today 54 (2001) 39.
[4] J. de Boeck, W. van Roy, J. Das, V. Motsnyi, Z. Liu, L. Lagae,H. Boeve, K. Dessein, and G. Borghs, Semicond.Sci. Technol. 17 (2002) 342.
[5] R. A. de Groot, F. M. Mueller, P. G. van Engen, and K. H. J.Buschow, Phys. Rev. Lett. 50 (1983) 2024.
[6] I. Galanakis, P.H. Dederichs, and N. Papanikolaou, Phys. Rev. B 66 (2002) 134428.
[7] I. Galanakis, P.H. Dederichs, and N. Papanikolaou, Phys. Rev. B 66 (2002) 174429.
[8] I. Galanakis, Ph. Mavropoulos, and P.H. Dederichs, J. Phys. D: Appl. Phys. 39 (2006) 765.
[9] H.C. Kandpal, G. H. Fecher, and C. Felser, J. Phys. D: Appl. Phys. 40 (2007) 1507.
[10] K. Özdoğan, I. Galanakis, E. Sasıoğlu, and B. Aktas, Solid State Commun. 492 (2007) 142.
[11] F. Ahmadian and A. Salary, Intermetallics. 46 (2014) 243.
[12] M. Kawakami, Y. Kasamatsu, and H. Ido, J. Magn. Magn. Mater. 70 (1987) 265.
[13] S. Wurmehl, G.H. Fecher, H.C. Kandpal, V. Ksenofontov, C. Felser, H.- J. Lin, and J. Morais, Phys. Rev. B 72 (2005) 184434.
[14] G. Schmidt, D. Ferrand, L. W. Molenkamp, A. T. Filip, and B. J. van Wees, Phys. Rev. B 62 (2000) R4790.
[15] K. Yakushi, K. Saito, K. Takanashi, Y. K. Takahashi, and K. Hondo, Appl. Phys. Lett. 88, (2006) 082501.
[16] S.R. Barman and A. Chakrabarti, Phys. Rev. B 77 (2008) 176401.
[17] H. Luo, G. Liu, F. Meng, S. Li, W. Zhu, G. Wu, X. Zhu, and C. Jiang, Physica B: Condens. Matter 405 (2010) 3092.
[18] H. Luo, G. Liu, Z. Feng, Y. Li, L. Ma, G. Wu, X. Zhu, C. Jiang, and H. Xu, J. Magn. Magn. Mater. 321 (2009) 4063.
[19] A. Yamasaki, S. Imada, R. Arai, H. Utsunomiya, S. Suga, T. Muro, Y. Saitoh, T. Kanomata, and S. Ishida, Phys. Rev. B 65 (2002) 104410.
[20] T. Kanomata, T. Sasaki, H. Nishihara, H. Yoshida, T. Kaneko, S. Hane, T. Goto, N. Takeishi, and S. Ishida, J. Alloys. Compd. 393 (2005) 26.
[21] W. Zhang, Z. Qian, Y. Sui, Y. Liu, W. Su, M. Zhang, Z. Liu, G. Liu, and G. Wu, J. Magn. Magn. Mater. 299 (2006) 255.
[22] J. Y. Jiu and J. I. Lee, J. Korean. Phys. Soc. 51 (2007) 155.
[23] S. Li, Y. Liu, Z. Ren, X. Zhang, and G. Liu, J. Korean. Phys. Soc. 65 (2014) 1059.
[24] P. Hohenberg and W. Kohn, Phys. Rev. 136 (1964) B864; W. Kohn and L. J. Sham, Phys. Rev. 140 (1965) A1133.
[25] P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, and J. Luitz, WIEN2k: An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties, Karlheinz Schwarz, Techn. Universitat Wien, Wien, Austria, 2001, ISBN: 3-9501031-1-2.
[26] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865.
[27] H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13 (1976) 5188.
[28] F. D. Murnaghan, Proc. Natl. Acad. Sci. U.S.A. 30 (1944) 244.
[29] M.L. Cohen, Phys. Rev. B 32 (1985) 7988.
[30] S.C. Lee, T.D. Lee, P. Blaha, and K. Schwarz, J. Appl. Phys. 97 (2005) 10C307.
[31] H.C. Kandpal, V. Ksenofontov, M. Wojcik, R. Seshadri, and C. Felser, J. Phys. D: Appl. Phys. 40 (2007) 1587.
[32] W. Martienssen and H. Warlimont, Springer Handbook of Condensed Matter and Materials Data (Springer, Berlin, Heidelberg 2005), ISBN: 3-540-44376-2.
[33] R. F. W. Bader and H. Essen, J. Chem. Phys. 80 (1984) 1943.
[34] T. S. Koritsanszky and P. Coppens, Chem. Rev. 101 (2001) 1583.
[35] R. F. W. Bader, T. T. Nguyen-Dang, and Y. Tal, Rep. Prog. Phys. 44 (1981) 893.
[36] A. Martin Pendas, A. Costales, and V. Luana, Phys. Rev. B 55 (1997) 4275.
[37] R. F. W. Bader, Atoms in Molecules: A Quantum Theory (Oxford: Oxford University Press, 1990).
[38] A. D. Becke and K. E. Edgecombe, J. Chem. Phys. 92 (1990) 5397.