Search results for: Signal propagation characteristics
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4007

Search results for: Signal propagation characteristics

3407 Mechanical Characteristics of Spaghetti Enriched with Whole Soy Flour

Authors: Nasehi, B., Mortazavi, S. A., Razavi, S.

Abstract:

The influence of full-fat soy flour (FFSF) and extrusion conditions on the mechanical characteristics of dry spaghetti were evaluated. Process was performed with screw speed of 10-40rpm and water circulating temperature of 35-70°C. Data analysis using mixture design showed that this enrichment resulted in significant differences in mechanical strength.

Keywords: Pasta, Mixture design, Enrichment, Texture.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2648
3406 Spectrum Sensing Based On the Cyclostationarity of PU Signals in High Traffic Environments

Authors: Keunhong Chae, Youngpo Lee, Seokho Yoon

Abstract:

In cognitive radio (CR) systems, the primary user (PU) signal would randomly depart or arrive during the sensing period of a CR user, which is referred to as the high traffic environment. In this paper, we propose a novel spectrum sensing scheme based on the cyclostationarity of PU signals in high traffic environments. Specifically, we obtain a test statistic by applying an estimate of spectral autocoherence function of the PU signal to the generalized- likelihood ratio. From numerical results, it is confirmed that the proposed scheme provides a better spectrum sensing performance compared with the conventional spectrum sensing scheme based on the energy of the PU signals in high traffic environments.

Keywords: Spectrum sensing, cyclostationarity, high traffic environments.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1850
3405 Efficient Signal Detection Using QRD-M Based On Channel Condition in MIMO-OFDM System

Authors: Jae-Jeong Kim, Ki-Ro Kim, Hyoung-Kyu Song

Abstract:

In this paper, we propose an efficient signal detector that switches M parameter of QRD-M detection scheme is proposed for MIMO-OFDM system. The proposed detection scheme calculates the threshold by 1-norm condition number and then switches M parameter of QRD-M detection scheme according to channel information. If channel condition is bad, the parameter M is set to high value to increase the accuracy of detection. If channel condition is good, the parameter M is set to low value to reduce complexity of detection. Therefore, the proposed detection scheme has better tradeoff between BER performance and complexity than the conventional detection scheme. The simulation result shows that the complexity of proposed detection scheme is lower than QRD-M detection scheme with similar BER performance.

Keywords: MIMO-OFDM, QRD-M, Channel condition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2015
3404 Curvelet Transform Based Two Class Motor Imagery Classification

Authors: Nebi Gedik

Abstract:

One of the important parts of the brain-computer interface (BCI) studies is the classification of motor imagery (MI) obtained by electroencephalography (EEG). The major goal is to provide non-muscular communication and control via assistive technologies to people with severe motor disorders so that they can communicate with the outside world. In this study, an EEG signal classification approach based on multiscale and multi-resolution transform method is presented. The proposed approach is used to decompose the EEG signal containing motor image information (right- and left-hand movement imagery). The decomposition process is performed using curvelet transform which is a multiscale and multiresolution analysis method, and the transform output was evaluated as feature data. The obtained feature set is subjected to feature selection process to obtain the most effective ones using t-test methods. SVM and k-NN algorithms are assigned for classification.

Keywords: motor imagery, EEG, curvelet transform, SVM, k-NN

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 609
3403 Characterization and Modeling of Piezoelectric Integrated Micro Speakers for Audio Acoustic Actuation

Authors: J. Mendoza-López, S. Sánchez-Solano, J. L. Huertas-Díaz

Abstract:

An array of piezoelectric micro actuators can be used for radiation of an ultrasonic carrier signal modulated in amplitude with an acoustic signal, which yields audio frequency applications as the air acts as a self-demodulating medium. This application is known as the parametric array. We propose a parametric array with array elements based on existing piezoelectric micro ultrasonic transducer (pMUT) design techniques. In order to reach enough acoustic output power at a desired operating frequency, a proper ratio between number of array elements and array size needs to be used, with an array total area of the order of one cm square. The transducers presented are characterized via impedance, admittance, noise figure, transducer gain and frequency responses.

Keywords: Pizeoelectric, Microspeaker, MEMS, pMUT, Parametric Array

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2240
3402 Blind Source Separation Using Modified Gaussian FastICA

Authors: V. K. Ananthashayana, Jyothirmayi M.

Abstract:

This paper addresses the problem of source separation in images. We propose a FastICA algorithm employing a modified Gaussian contrast function for the Blind Source Separation. Experimental result shows that the proposed Modified Gaussian FastICA is effectively used for Blind Source Separation to obtain better quality images. In this paper, a comparative study has been made with other popular existing algorithms. The peak signal to noise ratio (PSNR) and improved signal to noise ratio (ISNR) are used as metrics for evaluating the quality of images. The ICA metric Amari error is also used to measure the quality of separation.

Keywords: Amari error, Blind Source Separation, Contrast function, Gaussian function, Independent Component Analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1736
3401 A Novel SVM-Based OOK Detector in Low SNR Infrared Channels

Authors: J. P. Dubois, O. M. Abdul-Latif

Abstract:

Support Vector Machine (SVM) is a recent class of statistical classification and regression techniques playing an increasing role in applications to detection problems in various engineering problems, notably in statistical signal processing, pattern recognition, image analysis, and communication systems. In this paper, SVM is applied to an infrared (IR) binary communication system with different types of channel models including Ricean multipath fading and partially developed scattering channel with additive white Gaussian noise (AWGN) at the receiver. The structure and performance of SVM in terms of the bit error rate (BER) metric is derived and simulated for these channel stochastic models and the computational complexity of the implementation, in terms of average computational time per bit, is also presented. The performance of SVM is then compared to classical binary signal maximum likelihood detection using a matched filter driven by On-Off keying (OOK) modulation. We found that the performance of SVM is superior to that of the traditional optimal detection schemes used in statistical communication, especially for very low signal-to-noise ratio (SNR) ranges. For large SNR, the performance of the SVM is similar to that of the classical detectors. The implication of these results is that SVM can prove very beneficial to IR communication systems that notoriously suffer from low SNR at the cost of increased computational complexity.

Keywords: Least square-support vector machine, on-off keying, matched filter, maximum likelihood detector, wireless infrared communication.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1946
3400 Design of Power System Stabilizer Based on Sliding Mode Control Theory for Multi- Machine Power System

Authors: Hossein Shahinzadeh, Ladan Darougaran, Ebrahim Jalili Sani, Hamed Yavari, Mahdi Mozaffari Legha

Abstract:

This paper present a new method for design of power system stabilizer (PSS) based on sliding mode control (SMC) technique. The control objective is to enhance stability and improve the dynamic response of the multi-machine power system. In order to test effectiveness of the proposed scheme, simulation will be carried out to analyze the small signal stability characteristics of the system about the steady state operating condition following the change in reference mechanical torque and also parameters uncertainties. For comparison, simulation of a conventional control PSS (lead-lag compensation type) will be carried out. The main approach is focusing on the control performance which later proven to have the degree of shorter reaching time and lower spike.

Keywords: Power system stabilizer (PSS), multi-machine power system, sliding mode control

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2366
3399 Dependence of Particle Initiated PD Characteristics on Size and Position of Metallic Particle Adhering to the Spacer Surface in GIS

Authors: F. N. Budiman, Y. Khan, A. A. Khan, A. Beroual, N. H. Malik, A. A. Al-Arainy

Abstract:

It is well known that metallic particles reduce the reliability of Gas-Insulated Substation (GIS) equipments by initiating partial discharge (PDs) that can lead to breakdown and complete failure of GIS. This paper investigates the characteristics of PDs caused by metallic particle adhering to the solid spacer. The PD detection and measurement were carried out by using IEC 60270 method with particles of different sizes and at different positions on the spacer surface. The results show that a particle of certain size at certain position possesses a unique PD characteristic as compared to those caused by particles of different sizes and/or at different positions. Therefore PD characteristics may be useful for the particle size and position identification.

Keywords: Particle, partial discharge, GIS, spacer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1607
3398 Improved Fuzzy Neural Modeling for Underwater Vehicles

Authors: O. Hassanein, Sreenatha G. Anavatti, Tapabrata Ray

Abstract:

The dynamics of the Autonomous Underwater Vehicles (AUVs) are highly nonlinear and time varying and the hydrodynamic coefficients of vehicles are difficult to estimate accurately because of the variations of these coefficients with different navigation conditions and external disturbances. This study presents the on-line system identification of AUV dynamics to obtain the coupled nonlinear dynamic model of AUV as a black box. This black box has an input-output relationship based upon on-line adaptive fuzzy model and adaptive neural fuzzy network (ANFN) model techniques to overcome the uncertain external disturbance and the difficulties of modelling the hydrodynamic forces of the AUVs instead of using the mathematical model with hydrodynamic parameters estimation. The models- parameters are adapted according to the back propagation algorithm based upon the error between the identified model and the actual output of the plant. The proposed ANFN model adopts a functional link neural network (FLNN) as the consequent part of the fuzzy rules. Thus, the consequent part of the ANFN model is a nonlinear combination of input variables. Fuzzy control system is applied to guide and control the AUV using both adaptive models and mathematical model. Simulation results show the superiority of the proposed adaptive neural fuzzy network (ANFN) model in tracking of the behavior of the AUV accurately even in the presence of noise and disturbance.

Keywords: AUV, AUV dynamic model, fuzzy control, fuzzy modelling, adaptive fuzzy control, back propagation, system identification, neural fuzzy model, FLNN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2148
3397 Minimizing Energy Consumption in Wireless Sensor Networks using Binary Integer Linear Programming

Authors: Chompunut Jantarasorn, Chutima Prommak

Abstract:

The important issue considered in the widespread deployment of Wireless Sensor Networks (WSNs) is an efficiency of the energy consumption. In this paper, we present a study of the optimal relay station planning problems using Binary Integer Linear Programming (BILP) model to minimize the energy consumption in WSNs. Our key contribution is that the proposed model not only ensures the required network lifetime but also guarantees the radio connectivity at high level of communication quality. Specially, we take into account effects of noise, signal quality limitation and bit error rate characteristics. Numerical experiments were conducted in various network scenarios. We analyzed the effects of different sensor node densities and distribution on the energy consumption.

Keywords: Binary Integer Linear Programming, BILP, Energy consumption, Optimal node placement and Wireless sensor networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2195
3396 Unified Power Flow Controller Placement to Improve Damping of Power Oscillations

Authors: M. Salehi, A. A. Motie Birjandi, F. Namdari

Abstract:

Weak damping of low frequency oscillations is a frequent phenomenon in electrical power systems. These frequencies can be damped by power system stabilizers. Unified power flow controller (UPFC), as one of the most important FACTS devices, can be applied to increase the damping of power system oscillations and the more effect of this controller on increasing the damping of oscillations depends on its proper placement in power systems. In this paper, a technique based on controllability is proposed to select proper location of UPFC and the best input control signal in order to enhance damping of power oscillations. The effectiveness of the proposed technique is demonstrated in IEEE 9 bus power system.

Keywords: Unified power flow controller (UPFC), controllability, small signal analysis, eigenvalues.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1897
3395 Dependence of Virtual Subjects Reflection from the Features of Coping Behavior of Students

Authors: F.S.Tashimova, A. Mirzabekova, Z. Ismagambetova, Y. Massanov, Z. Gabit

Abstract:

In the globalization process, when the struggle for minds and values of the people is taking place, the impact of the virtual space can cause unexpected effects and consequences in the process of adjustment of young people in this world. Their special significance is defined by unconscious influence on the underlying process of meaning and therefore the values preached by them are much more effective and affect both the personal characteristics and the peculiarities of adjustment process. Related to this the challenge is to identify factors influencing the reflection characteristics of virtual subjects and measures their impact on the personal characteristics of the students.

Keywords: Coping behavior, overcoming, personalization (representation), psychological defense, values, virtual space, virtual subject, subjective reflection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1165
3394 From Electroencephalogram to Epileptic Seizures Detection by Using Artificial Neural Networks

Authors: Gaetano Zazzaro, Angelo Martone, Roberto V. Montaquila, Luigi Pavone

Abstract:

Seizure is the main factor that affects the quality of life of epileptic patients. The diagnosis of epilepsy, and hence the identification of epileptogenic zone, is commonly made by using continuous Electroencephalogram (EEG) signal monitoring. Seizure identification on EEG signals is made manually by epileptologists and this process is usually very long and error prone. The aim of this paper is to describe an automated method able to detect seizures in EEG signals, using knowledge discovery in database process and data mining methods and algorithms, which can support physicians during the seizure detection process. Our detection method is based on Artificial Neural Network classifier, trained by applying the multilayer perceptron algorithm, and by using a software application, called Training Builder that has been developed for the massive extraction of features from EEG signals. This tool is able to cover all the data preparation steps ranging from signal processing to data analysis techniques, including the sliding window paradigm, the dimensionality reduction algorithms, information theory, and feature selection measures. The final model shows excellent performances, reaching an accuracy of over 99% during tests on data of a single patient retrieved from a publicly available EEG dataset.

Keywords: Artificial Neural Network, Data Mining, Electroencephalogram, Epilepsy, Feature Extraction, Seizure Detection, Signal Processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1302
3393 Probabilistic Wavelet Neural Network Based Vibration Analysis of Induction Motor Drive

Authors: K. Jayakumar, S. Thangavel

Abstract:

In this paper proposed the effective fault detection of industrial drives by using Biorthogonal Posterior Vibration Signal-Data Probabilistic Wavelet Neural Network (BPPVS-WNN) system. This system was focused to reducing the current flow and to identify faults with lesser execution time with harmonic values obtained through fifth derivative. Initially, the construction of Biorthogonal vibration signal-data based wavelet transform in BPPVS-WNN system localizes the time and frequency domain. The Biorthogonal wavelet approximates the broken bearing using double scaling and factor, identifies the transient disturbance due to fault on induction motor through approximate coefficients and detailed coefficient. Posterior Probabilistic Neural Network detects the final level of faults using the detailed coefficient till fifth derivative and the results obtained through it at a faster rate at constant frequency signal on the industrial drive. Experiment through the Simulink tool detects the healthy and unhealthy motor on measuring parametric factors such as fault detection rate based on time, current flow rate, and execution time.

Keywords: Biorthogonal Wavelet Transform, Posterior Probabilistic Neural Network, Induction Motor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1016
3392 A Novel Convergence Accelerator for the LMS Adaptive Algorithm

Authors: Jeng-Shin Sheu, Jenn-Kaie Lain, Tai-Kuo Woo, Jyh-Horng Wen

Abstract:

The least mean square (LMS) algorithmis one of the most well-known algorithms for mobile communication systems due to its implementation simplicity. However, the main limitation is its relatively slow convergence rate. In this paper, a booster using the concept of Markov chains is proposed to speed up the convergence rate of LMS algorithms. The nature of Markov chains makes it possible to exploit the past information in the updating process. Moreover, since the transition matrix has a smaller variance than that of the weight itself by the central limit theorem, the weight transition matrix converges faster than the weight itself. Accordingly, the proposed Markov-chain based booster thus has the ability to track variations in signal characteristics, and meanwhile, it can accelerate the rate of convergence for LMS algorithms. Simulation results show that the LMS algorithm can effectively increase the convergence rate and meantime further approach the Wiener solution, if the Markov-chain based booster is applied. The mean square error is also remarkably reduced, while the convergence rate is improved.

Keywords: LMS, Markov chain, convergence rate, accelerator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1759
3391 Combination of Different Classifiers for Cardiac Arrhythmia Recognition

Authors: M. R. Homaeinezhad, E. Tavakkoli, M. Habibi, S. A. Atyabi, A. Ghaffari

Abstract:

This paper describes a new supervised fusion (hybrid) electrocardiogram (ECG) classification solution consisting of a new QRS complex geometrical feature extraction as well as a new version of the learning vector quantization (LVQ) classification algorithm aimed for overcoming the stability-plasticity dilemma. Toward this objective, after detection and delineation of the major events of ECG signal via an appropriate algorithm, each QRS region and also its corresponding discrete wavelet transform (DWT) are supposed as virtual images and each of them is divided into eight polar sectors. Then, the curve length of each excerpted segment is calculated and is used as the element of the feature space. To increase the robustness of the proposed classification algorithm versus noise, artifacts and arrhythmic outliers, a fusion structure consisting of five different classifiers namely as Support Vector Machine (SVM), Modified Learning Vector Quantization (MLVQ) and three Multi Layer Perceptron-Back Propagation (MLP–BP) neural networks with different topologies were designed and implemented. The new proposed algorithm was applied to all 48 MIT–BIH Arrhythmia Database records (within–record analysis) and the discrimination power of the classifier in isolation of different beat types of each record was assessed and as the result, the average accuracy value Acc=98.51% was obtained. Also, the proposed method was applied to 6 number of arrhythmias (Normal, LBBB, RBBB, PVC, APB, PB) belonging to 20 different records of the aforementioned database (between– record analysis) and the average value of Acc=95.6% was achieved. To evaluate performance quality of the new proposed hybrid learning machine, the obtained results were compared with similar peer– reviewed studies in this area.

Keywords: Feature Extraction, Curve Length Method, SupportVector Machine, Learning Vector Quantization, Multi Layer Perceptron, Fusion (Hybrid) Classification, Arrhythmia Classification, Supervised Learning Machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2217
3390 Remote Control Software for Rohde and Schwarz Instruments

Authors: Tomas Shejbal, Matej Petkov, Tomas Zalabsky, Jan Pidanic, Zdenek Nemec

Abstract:

The paper describes software for remote control and measuring with new Graphical User Interface for Rohde & Schwarz instruments. Software allows remote control through Ethernet and supports basic and advanced functions for control various type of instruments like network and spectrum analyzers, power meters, signal generators and oscilloscopes. Standard Commands for Programmable Instruments (SCPI) and Virtual Instrument Software Architecture (VISA) are used for remote control and setup of instruments. Developed software is modular with user friendly graphic user interface for each instrument with automatic identification of instruments.

Keywords: Remote control, Rohde&Schwarz, SCPI, VISA, MATLAB, spectum analyzer, network analyzer, oscilloscope, signal generator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5394
3389 Modeling and Optimization of Process Parameters in PMEDM by Genetic Algorithm

Authors: Farhad Kolahan, Mohammad Bironro

Abstract:

This paper addresses modeling and optimization of process parameters in powder mixed electrical discharge machining (PMEDM). The process output characteristics include metal removal rate (MRR) and electrode wear rate (EWR). Grain size of Aluminum powder (S), concentration of the powder (C), discharge current (I) pulse on time (T) are chosen as control variables to study the process performance. The experimental results are used to develop the regression models based on second order polynomial equations for the different process characteristics. Then, a genetic algorithm (GA) has been employed to determine optimal process parameters for any desired output values of machining characteristics.

Keywords: Regression modeling, PMEDM, GeneticAlgorithm, Optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1489
3388 The Role of Ideophones: Phonological and Morphological Characteristics in Literature

Authors: Cristina Bahón Arnaiz

Abstract:

Many Asian languages, such as Korean and Japanese, are well-known for their wide use of sound symbolic words or ideophones. This is a very particular characteristic which enriches its lexicon hugely. Ideophones are a class of sound symbolic words that utilize sound symbolism to express aspects, states, emotions, or conditions that can be experienced through the senses, such as shape, color, smell, action or movement. Ideophones have very particular characteristics in terms of sound symbolism and morphology, which distinguish them from other words. The phonological characteristics of ideophones are vowel ablaut or vowel gradation and consonant mutation. In the case of Korean, there are light vowels and dark vowels. Depending on the type of vowel that is used, the meaning will slightly change. Consonant mutation, also known as consonant ablaut, contributes to the level of intensity, emphasis, and volume of an expression. In addition to these phonological characteristics, there is one main morphological singularity, which is reduplication and it carries the meaning of continuity, repetition, intensity, emphasis, and plurality. All these characteristics play an important role in both linguistics and literature as they enhance the meaning of what is trying to be expressed with incredible semantic detail, expressiveness, and rhythm. The following study will analyze the ideophones used in a single paragraph of a Korean novel, which add incredible yet subtle detail to the meaning of the words, and advance the expressiveness and rhythm of the text. The results from analyzing one paragraph from a novel, after presenting the phonological and morphological characteristics of Korean ideophones, will evidence the important role that ideophones play in literature. 

Keywords: Ideophones, mimetic words, phonomimes, phenomimes, psychomimes, sound symbolism.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1098
3387 Wind-Induced Phenomenon in a Closed Water Area with Floating-Leaved Plant

Authors: Akinori Ozaki

Abstract:

In this study, in order to clarify wind-induced phenomena, especially vertical mixing of density stratification in a closed water area with floating-leaved plants, we conducted hydraulic experiments on wind flow characteristics, wind wave characteristics, entrainment phenomena and turbulent structure by using a wind tunnel test tank and simulated floating-leaved plants. From the experimental results of wind flow and wind wave characteristics, we quantified the impact of the occupancy rate of the plants on their resistance characteristics. From the experimental results of entrainment phenomena, we defined the parameter that could explain the magnitude of mixing between the density stratifications, and quantified the impact of the occupancy rate on vertical mixing between stratifications. From the experimental results of the turbulent structure of the upper layer, we clarified the differences in small-scale turbulence components at each occupancy rate and quantified the impact of the occupancy rate on the turbulence characteristics. For a summary of this study, we theoretically quantified wind-induced entrainment phenomena in a closed water area with luxuriant growth of floating-leaved plants. The results indicated that the impact of luxuriant growth of floating-leaved plants in a closed water body could be seen in the difference in small-scale fluid characteristics, and these characteristics could be expressed using the small-scale turbulent components.

Keywords: Density Stratification, Floating-leaved Plant, Wind-induced Entrainment Phenomenon, Turbulent Structure

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1801
3386 Doping of Conveyor Belt Materials with Nanostructured Fillers to Adapt Innovative Performance Characteristics

Authors: S. Falkenberg, L. Overmeyer

Abstract:

The “conveyor belt" as a product represents a complex high performance component with a wide range of different applications. Further development of these highly complex components demands an integration of new technologies and new enhanced materials. In this context nanostructured fillers appear to have a more promising effect on the performance of the conveyor belt composite than conventional micro-scaled fillers. Within the project “DotTrans" nanostructured fillers, for example silicon dioxide, are used to optimize performance parameters of conveyor belt systems. The objective of the project includes operating parameters like energy consumption or friction characteristics as well as adaptive parameters like cut or wear resistance.

Keywords: Conveyor belt, nanostructured fillers, wear resistance, friction characteristics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2139
3385 Characteristics of Hydraulic Jump

Authors: Sumit Gandhi

Abstract:

The effect of an abruptly expanding channel on the main characteristics of hydraulic jump is considered experimentally. The present study was made for supercritical flow of Froude number varying between 2 to 9 and approach to expanded channel width ratios 0.4, 0.5, 0.6 and 0.8. Physical explanations of the variation of these characteristics under varying flow conditions are discussed based on the observation drawn from experimental results. The analytical equation for the sequent depth ratio in an abruptly expanding channel as given by eminent hydraulic engineers are verified well with the experimental data for all expansion ratios, and the empirical relation was also verified with the present experimental data.

Keywords: Abruptly Expanding Channel, Hydraulic Jump, Efficiency, Sequent Depth Ratio.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4288
3384 Effect of Groove Location on the Dynamic Characteristics of Multiple Axial Groove Water Lubricated Journal Bearing

Authors: M. Vijaya Kini, R. S. Pai, D. Srikanth Rao, Satish Shenoy B, R. Pai

Abstract:

The stability characteristics of water lubricated journal bearings having three axial grooves are obtained theoretically. In this lubricant (water) is fed under pressure from one end of the bearing, through the 3-axial grooves (groove angles may vary). These bearings can use the process fluid as the lubricant, as in the case of feed water pumps. The Reynolds equation is solved numerically by the finite difference method satisfying the boundary conditions. The stiffness and damping coefficient for various bearing number and eccentricity ratios, assuming linear pressure drop along the groove, shows that smaller groove angles better results.

Keywords: 3-axial groove, dynamic characteristics, groovelocation, water lubricated bearings.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2125
3383 Eukaryotic Gene Prediction by an Investigation of Nonlinear Dynamical Modeling Techniques on EIIP Coded Sequences

Authors: Mai S. Mabrouk, Nahed H. Solouma, Abou-Bakr M. Youssef, Yasser M. Kadah

Abstract:

Many digital signal processing, techniques have been used to automatically distinguish protein coding regions (exons) from non-coding regions (introns) in DNA sequences. In this work, we have characterized these sequences according to their nonlinear dynamical features such as moment invariants, correlation dimension, and largest Lyapunov exponent estimates. We have applied our model to a number of real sequences encoded into a time series using EIIP sequence indicators. In order to discriminate between coding and non coding DNA regions, the phase space trajectory was first reconstructed for coding and non-coding regions. Nonlinear dynamical features are extracted from those regions and used to investigate a difference between them. Our results indicate that the nonlinear dynamical characteristics have yielded significant differences between coding (CR) and non-coding regions (NCR) in DNA sequences. Finally, the classifier is tested on real genes where coding and non-coding regions are well known.

Keywords: Gene prediction, nonlinear dynamics, correlation dimension, Lyapunov exponent.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1817
3382 Pyrolysis Characteristics and Kinetics of Macroalgae Biomass Using Thermogravimetric Analyzer

Authors: Zhao Hui, Yan Huaxiao, Zhang Mengmeng, Qin Song

Abstract:

The pyrolysis characteristics and kinetics of seven marine biomass, which are fixed Enteromorpha clathrata, floating Enteromorpha clathrata, Ulva lactuca L., Zosterae Marinae L., Thallus Laminariae, Asparagus schoberioides kunth and Undaria pinnatifida (Harv.), were studied with thermogravimetric analysis method. Simultaneously, cornstalk, which is a grass biomass, and sawdust, which is a lignocellulosic biomass, were references. The basic pyrolysis characteristics were studied by using TG- DTG-DTA curves. The results showed that there were three stages (dehydration, dramatic weight loss and slow weight loss) during the whole pyrolysis process of samples. The Tmax of marine biomass was significantly lower than two kinds of terrestrial biomass. Zosterae Marinae L. had a relatively high stability of pyrolysis, but floating Enteromorpha clathrata had lowest stability of pyrolysis and a good combustion characteristics. The corresponding activation energy E and frequency factor A were obtained by Coats-Redfern method. It was found that the pyrolysis reaction mechanism functions of three kinds of biomass are different.

Keywords: macroalgae biomass, pyrolysis, thermogravimetric analysis, thermolysis kinetics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2730
3381 Theoretical Modeling and Experimental Study of Combustion and Performance Characteristics of Biodiesel in Turbocharged Low Heat Rejection D.I Diesel Engine

Authors: B.Rajendra Prasath, P.Tamilporai, Mohd.F.Shabir

Abstract:

An effort has been taken to simulate the combustion and performance characteristics of biodiesel fuel in direct injection (D.I) low heat rejection (LHR) diesel engine. Comprehensive analyses on combustion characteristics such as cylinder pressure, peak cylinder pressure, heat release and performance characteristics such as specific fuel consumption and brake thermal efficiency are carried out. Compression ignition (C.I) engine cycle simulation was developed and modified in to LHR engine for both diesel and biodiesel fuel. On the basis of first law of thermodynamics the properties at each degree crank angle was calculated. Preparation and reaction rate model was used to calculate the instantaneous heat release rate. A gas-wall heat transfer calculations are based on the ANNAND-s combined heat transfer model with instantaneous wall temperature to analyze the effect of coating on heat transfer. The simulated results are validated by conducting the experiments on the test engine under identical operating condition on a turbocharged D.I diesel engine. In this analysis 20% of biodiesel (derived from Jatropha oil) blended with diesel and used in both conventional and LHR engine. The simulated combustion and performance characteristics results are found satisfactory with the experimental value.

Keywords: Biodiesel, Direct injection, Low heat rejection, Turbocharged engine

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2768
3380 Design of a Low Power Compensated 90nm RF Multiplier with Improved Isolation Characteristics for a Transmitted Reference Receiver Front End

Authors: Apratim Roy, A. B. M. H. Rashid

Abstract:

In this paper, a double balanced radio frequency multiplier is presented which is customized for transmitted reference ultra wideband (UWB) receivers. The multiplier uses 90nm model parameters and exploits compensating transistors to provide controllable gain for a Gilbert core. After performing periodic and quasiperiodic non linear analyses the RF mixer (multiplier) achieves a voltage conversion gain of 16 dB and a DSB noise figure of 8.253 dB with very low power consumption. A high degree of LO to RF isolation (in the range of -94dB), RF to IF isolation (in the range of -95dB) and LO to IF isolation (in the range of -143dB) is expected for this design with an input-referred IP3 point of -1.93 dBm and an input referred 1 dB compression point of -10.67dBm. The amount of noise at the output is 7.7 nV/√Hz when the LO input is driven by a 10dBm signal. The mixer manifests better results when compared with other reported multiplier circuits and its Zero-IF performance ensures its applicability as TR-UWB multipliers.

Keywords: UWB, Transmitted Reference, Controllable Gain, RFMixer, Multiplier.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1335
3379 A Review of the Characteristics and Optimization of Optical Properties of Zirconia Ceramics for Aesthetic Dental Restorations

Authors: R. A. Shahmiri, O. C. Standard, J. N. Hart, C. C. Sorrell

Abstract:

The ceramic yttria-stabilized tetragonal zirconia polycrystal (Y-TZP) has been used as a dental biomaterial for several decades. The strength and toughness of this material can be accounted for by its toughening mechanisms, which include transformation toughening, crack deflection, zone shielding, contact shielding, and crack bridging. Prevention of crack propagation is of critical importance in high-fatigue situations, such as those encountered in mastication and para-function. However, the poor translucence of Y-TZP in polycrystalline form is such that it may not meet the aesthetic requirements due to its white/grey appearance. To improve the optical properties of Y-TZP, more detailed study of the optical properties is required; in particular, precise evaluation of the refractive index, absorption coefficient, and scattering coefficient are necessary. The measurement of the optical parameters has been based on the assumption that light scattered from biological media is isotropically distributed over all angles. In fact, the optical behavior of real biological materials depends on the angular scattering of light due to the anisotropic nature of the materials. The purpose of the present work is to evaluate the optical properties (including color, opacity/translucence, scattering, and fluorescence) of zirconia dental ceramics and their control through modification of the chemical composition, phase composition, and surface microstructure.

Keywords: Optical properties, opacity/translucence, scattering, fluorescence, chemical composition, phase composition, surface microstructure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1505
3378 Product-Based Industrial Information Systems (Application to the Steel Industry)

Authors: Daniel F. Garcia, Diego Gonzalez

Abstract:

This paper shows a simple and effective approach to the design and implementation of Industrial Information Systems (IIS) oriented to control the characteristics of each individual product manufactured in a production line and also their manufacturing conditions. The particular products considered in this work are large steel strips that are coiled just after their manufacturing. However, the approach is directly applicable to coiled strips in other industries, like paper, textile, aluminum, etc. These IIS provide very detailed information of each manufactured product, which complement the general information managed by the ERP system of the production line. In spite of the high importance of this type of IIS to guarantee and improve the quality of the products manufactured in many industries, there are very few works about them in the technical literature. For this reason, this paper represents an important contribution to the development of this type of IIS, providing guidelines for their design, implementation and exploitation.

Keywords: Data storage, industrial information systems, measurement systems integration, signal acquisition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1426