Characterization and Modeling of Piezoelectric Integrated Micro Speakers for Audio Acoustic Actuation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33090
Characterization and Modeling of Piezoelectric Integrated Micro Speakers for Audio Acoustic Actuation

Authors: J. Mendoza-López, S. Sánchez-Solano, J. L. Huertas-Díaz

Abstract:

An array of piezoelectric micro actuators can be used for radiation of an ultrasonic carrier signal modulated in amplitude with an acoustic signal, which yields audio frequency applications as the air acts as a self-demodulating medium. This application is known as the parametric array. We propose a parametric array with array elements based on existing piezoelectric micro ultrasonic transducer (pMUT) design techniques. In order to reach enough acoustic output power at a desired operating frequency, a proper ratio between number of array elements and array size needs to be used, with an array total area of the order of one cm square. The transducers presented are characterized via impedance, admittance, noise figure, transducer gain and frequency responses.

Keywords: Pizeoelectric, Microspeaker, MEMS, pMUT, Parametric Array

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1073255

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2247

References:


[1] M. F. Hamilton, "Audio parametric arrays in air," The Journal of the Acoustical Society of America, vol. 125, pp. 2688-2688, 2009.
[2] P. J. Westervelt, "Parametric acoustic array," Journal of The Acoustical Society of America, vol. 35, pp. 535-&, 1963 1963.
[3] W. S. Liu and Z. X. Xu, "Propagation of the difference frequency wave generated by a truncated parametric array through a water sediment interface," Journal of The Acoustical Society of America, vol. 89, pp. 92-97, Jan 1991.
[4] K. L. Williams, L. J. Satkowiak, and D. R. Bugler, "Linear and parametric array transmission across water-sand interface - Theory, experiment and observation of beam displacement," Journal of The Acoustical Society of America, vol. 86, pp. 311-325, Jul 1989.
[5] J. M. Huckabay, "An experimental study of parametric acoustic arrays with intermediate directivity in water," Journal of The Acoustical Society of America, vol. 67, pp. 1480-1485, 1980 1980.
[6] L. Bjorno, J. Folsberg, and L. Pedersen, "Parametric arrays in shallow water," Journal De Physique, vol. 41, pp. 71-82, 1979 1979.
[7] J. R. Clynch and T. G. Muir, "Application of parametric arrays to shallow-water propagation," Journal of The Acoustical Society of America, vol. 57, pp. S64-S64, 1975 1975.
[8] F. J. Pompei, "The use of airborne ultrasonics for generating audible sound beams," Journal of The Audio Engineering Society, vol. 47, pp. 726-731, Sep 1999.
[9] M. Yoneyama, J.-i. Fujimoto, Y. Kawamo, and S. Sasabe, "The audio spotlight: An application of nonlinear interaction of sound waves to a new type of loudspeaker design," The Journal of the Acoustical Society of America, vol. 73, pp. 1532-1536, 1983.
[10] M. B. Bennett and D. T. Blackstock, "Parametric array in air," The Journal of the Acoustical Society of America, vol. 57, pp. 562-568, 1975.
[11] T. D. Kite, J. T. Post, and M. F. Hamilton, "Parametric array in air: Distortion reduction by preprocessing," The Journal of the Acoustical Society of America, vol. 103, pp. 2871-2871, 1998.
[12] Y. W. Kim and S. il Kim, "Novel preprocessing technique to improve harmonic distortion in airborne parametric array," 2002 6th International Conference on Signal Processing Proceedings, Vols I and Ii, pp. 1815- 1818, 2002.
[13] Y. H. Liew, K. Lee, F. A. Karnapi, and W. S. Gan, "Using psychoacoustics frequency masking to reduce distortion in a parametric array speaker," The Journal of the Acoustical Society of America, vol. 110, pp. 2741-2741, 2001.
[14] P. Ji, E.-L. Tan, and W.-S. Gan, "A Comparative Analysis of Preprocessing Methods for the Parametric Loudspeaker Based on the Khokhlov-Zabolotskaya-Kuznetsov Equation for Speech Reproduction," IEEE Transactions on Audio, Speech and Language Processing, vol. 19, pp. 937-946, 2011.
[15] I. O. Wygant, M. Kupnik, J. C. Windsor, W. M. Wright, M. S. Wochner, G. G. Yaralioglu, M. F. Hamilton, and B. T. Khuri-Yakub, "50 kHz capacitive micromachined ultrasonic transducers for generation of highly directional sound with parametric arrays " IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol. 56, pp. 193 - 203, 2009.
[16] I. O. Wygant, M. Kupnik, J. C. Windsor, W. M. Wright, M. S. Wochner, G. G. Yaralioglu, M. F. Hamilton, and B. T. Khuri-Yakub, "Capacitive micromachined ultrasonic transducers for generation of highly directional sound with a parametric array," The Journal of the Acoustical Society of America, vol. 123, pp. 3375-3375, 2008.
[17] Z. Wang, J. Miao, and W. Zhu, "Micromachined ultrasonic transducers and arrays based on piezoelectric thick film " Applied Physics A: Material Science and Processing, vol. 91, pp. 107-117, 2008.
[18] P. Muralt, N. Ledermann, J. Baborowski, B. A., S. Gentil, B. Belgacem, S. Petitgrand, A. Bosseboeuf, and N. Setter, "Piezoelectric micromachined ultrasonic transducers based on PZT thin films," IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol. 52, pp. 2276-2288, 2005.
[19] R. O. Cleveland, M. F. Hamilton, and D. T. Blackstock, "Time-domain modeling of finite-amplitude sound in relaxing fluids," Journal of The Acoustical Society of America, vol. 99, pp. 3312-3318, Jun 1996.
[20] Y. S. Lee and M. F. Hamilton, "Time-domain modeling of pulsed finiteamplitude sound beams," Journal of The Acoustical Society of America, vol. 97, pp. 906-917, 1995.
[21] T. Christopher, "Finite amplitude distortion-based inhomogeneous pulse echo ultrasonic imaging," Ieee Transactions on Ultrasonics Ferroelectrics and Frequency Control, vol. 44, pp. 125-139, Jan 1997.
[22] "IEEE Standard on Piezoelectricity ANSI/IEEE Std 176-1987," IEEE Ultrasonics, Ferroelectrics, and Frequency Control Society, 1987.
[23] S. A. N. Prasad, Q. Gallas, S. Horowitz, B. Homeijer, B. V. Sankar, L. N. Cattafesta, and M. Sheplak, "Analytical Electroacoustic Model of a Piezoelectric Composite Circular Plate," AIAA Journal, vol. 44, pp. 2311-2318, 2006.
[24] E. Hong, S. Trolier-McKinstry, R. Smith, S. V. Krishnaswamy, and C. B. Freidhoff, "Vibration of micomachined circular piezoelectric diaphragms," IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol. 53, pp. 697-705, 2006.
[25] G. Anderson, "On the determination of finite integral transforms for forced vibrations of circular plates," Journal of Sound and Vibration, vol. 9, pp. 126-144, 1969.
[26] S. Kopuz, Y. S. Unlusoy, and M. Caliskan, "Integrated FEM/BEM approach to the dynamic and acoustic analysis of plate structures," Engineering Analysis with Boundary Elements, vol. 17, pp. 269-277, 1996.