Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30135
A Review of the Characteristics and Optimization of Optical Properties of Zirconia Ceramics for Aesthetic Dental Restorations

Authors: R. A. Shahmiri, O. C. Standard, J. N. Hart, C. C. Sorrell

Abstract:

The ceramic yttria-stabilized tetragonal zirconia polycrystal (Y-TZP) has been used as a dental biomaterial for several decades. The strength and toughness of this material can be accounted for by its toughening mechanisms, which include transformation toughening, crack deflection, zone shielding, contact shielding, and crack bridging. Prevention of crack propagation is of critical importance in high-fatigue situations, such as those encountered in mastication and para-function. However, the poor translucence of Y-TZP in polycrystalline form is such that it may not meet the aesthetic requirements due to its white/grey appearance. To improve the optical properties of Y-TZP, more detailed study of the optical properties is required; in particular, precise evaluation of the refractive index, absorption coefficient, and scattering coefficient are necessary. The measurement of the optical parameters has been based on the assumption that light scattered from biological media is isotropically distributed over all angles. In fact, the optical behavior of real biological materials depends on the angular scattering of light due to the anisotropic nature of the materials. The purpose of the present work is to evaluate the optical properties (including color, opacity/translucence, scattering, and fluorescence) of zirconia dental ceramics and their control through modification of the chemical composition, phase composition, and surface microstructure.

Keywords: Optical properties, opacity/translucence, scattering, fluorescence, chemical composition, phase composition, surface microstructure.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1314534

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 901

References:


[1] S.J. Chu, A. Devigus, A.J. Mieleszko. "Fundamentals of color: shade matching and communication in esthetic dentistry." Chicago, IL: 2004.
[2] J.R. Kelly, P. Benetti. "Ceramic materials in dentistry: historical evolution and current practice." Australia Dental Journal. vol. 56, June. 2011, pp. 84-96.
[3] R. Belli, E. Geinzer, A. Muschweck, A. Petschelt, U. Lohbauer. "Mechanical fatigue degradation of ceramics versus resin composites for dental restorations." Dental Materials, vol. 30 April. 2014, pp. 424-32.
[4] I. Denry, J.R. Kelly. "Emerging ceramic-based materials for dentistry." Journal of Dental Research, vol. 93, December. 2014, pp. 1235-1242.
[5] N.F. Amat, A. Muchtar, N. Yahaya, M.J. Gazali. "A Review of zirconia as a dental restorative material." Australian Journal of Basic and Applied Sciences, vol. 6, November. 2012, pp. 9-13.
[6] C.Â.M. Volpato, L.G.D.A. Garbelotto, M.C. Fredel, F. Bondioli. "Application of zirconia in dentistry: biological, mechanical and optical considerations," Advances in Ceramics - Electric and Magnetic Ceramics, Bioceramics, Ceramics and Environment," Rijeka, Croatia: 2011. pp. 397-420.
[7] I. Denry, J.R. Kelly. "State of the art of zirconia for dental applications." Dental Materials, vol. 24, March. 2008, pp. 299-307.
[8] H. Wang, M.N. Aboushelib, A.J. Feilzer. "Strength influencing variables on CAD/CAM zirconia frameworks." Dental Materials. vol. 24, May. 2008, pp. 633-38.
[9] A.H. Heuer, N. Claussen, W.M. Kriven, M. Ruhle. "Stability of tetragonal ZrO2 particles in ceramic matrices." Journal of American Ceramic Society, vol. 65, December. 1982, pp. 642-50.
[10] R.G. Luthardt, M. Holzhüter, H. Rudolph, V. Herold, M. Walter., "CAD/CAM machining effects on Y-TZP zirconia." Dental Materials. vol. 20, July. 2004, pp. 655-62.
[11] P. Benetti, J.R. Kelly, M. Sanchez, A. Della Bona. "Influence of thermal gradients on stress state of veneered restorations." Dental Materials. vol. 30, May. 2014, pp. 554-63.
[12] T. Sun, R. Lai, R. Liu, S. Ma, Z. Zhou, S. Longquan. "Load-bearing capacity and the recommended thickness of dental monolithic zirconia single crowns." Journal of the Mechanical Behavior of Biomedical Materials, vol. 35, July. 2014, pp. 93-101.
[13] G.J. Christensen. "The all-ceramic restoration dilemma: where are we?" The Journal of the American Dental Association, vol. 142, June. 2011, pp. 668-71.
[14] S. Kruger, J. Deubener, C. Ritzberger, W. Holand. "Nucleation kinetics of lithium metasilicate in ZrO2-bearing lithium disilicate glasses for dental application." International Journal of Applied Glass Science. vol. 4, March. 2013, pp. 9-19.
[15] A. Apel, C. Van`t Hoen, V. Rheinberger, W. Holand. "Influence of ZrO2 on the crystallization and properties of lithium disilicate glass ceramics derived from a multi-component system." Journal of European Ceramic Society, vol. 27, June. 2007, pp. 1571-77.
[16] K. Thieme, C. Russel. "Nucleation and growth kinetics and phase analysis in zirconia-containing lithium disilicate glass." Journal of Materials Science, vol. 50, February. 2015, pp. 1488-99.
[17] X. Huang, X. Zheng, G. Zhao, B. Zhong, X. Zhang, G. Wen. "Microstructure and mechanical properties of zirconia-toughened lithium disilicate glass–ceramic composites." Materials Chemistry and Physics, vol. 143, January. 2014, pp. 845-52.
[18] 3M, 3M Paradigm MZ100 Block Technical product profile. 2000, 3M Dental Products: St. Paul, MN, USA.
[19] K. Nakamura, "Mechanical and microstructural properties of monolithic zirconia crown fracture resistance and impact of low-temperature degradation." Department of Prosthetic Dentistry/Dental Materials Science, Institute of Odontology Sahlgrenska Academy at University of Gothenburg., University of Gothenburg: Gothenburg, Göteborg, Sweden: 2015, pp. 80.
[20] E. Papia, C. Larsson, M. du Toit, P. Vult von Steyern. "Bonding between oxide ceramics and adhesive cement systems: A systematic review." Journal of Biomedical Materials Research Part B: Applied Biomaterials, vol. 102, February. 2014, pp. 395-413.
[21] W.D.J.R. Callister. "Materials science and engineering: An introduction." New York: 2007, pp. 975.
[22] A. Fernandez-Oliveras, M. Rubiño, M.M. Pérez. "Scattering and absorption properties of biomaterials for dental restorative applications." Journal of the European Optical Society Rapid Publications, vol. 8, 2013, pp. 13056.
[23] A. Fernandez-Oliveras, M. Rubiño, M.M. Perez. "Scattering anisotropy measurements in dental tissues and biomaterials." Journal of the European Optical Society Rapid Publications, vol. 7, 2012, pp. 12016.
[24] C. Volpato, M. Fredel, A. Philippi, C. Petter. "Ceramic materials and color in dentistry." Ceramic Materials, Wilfried Wunderlich (Ed.): 2010, p. 236.
[25] B. Yu, J.S. Ahn, Y.K. Lee. "Measurment of translucency of tooth enamel and dentin." Acta Odontologica Scandinavica., vol. 67, January. 2009, p. 57-64.
[26] A. Joiner. "The colour: a review of the literature." Journal of Dentistry, vol. 32, January. 2004, pp. 3-12.
[27] M.S. Cho, B. Yu, Y.K. Lee. "Opalescence of all-ceramic core and veneer materials." Dental Materials, vol. d25, June. 2009, pp. 695-702.
[28] Y.K. Lee. "Fluorescence properties of human teeth and dental calculus for clinical applications," J Biomed Opt., vol. 20, April. 2015, pp. 040901.
[29] G. Monsenego, G. Burdairon, B. Clerjaud. "Fluorescence of dental porcelain." Journal of Prosthetic Dentistry, vol. 69, January. 1993, pp. 106-13.
[30] D.W. McComb. "Bonding and electronic structure in Zirconia pseudo-polymorphus investigated by electron energy-loss spectroscopy." Physical Review B., vol 54, October. 1996, pp. 7094-102.
[31] W.M. Star. “Diffusion theory of light transport." in Optical-Thermal Response of Laser-Irradiated Tissue. 2011, Springer: Netherland. p. 145-201.
[32] E. Maslowsky. "Comparison of the electromagnetic spectra of common light sources: A general chemistry laboratory exercise." Journal of Chemical Education, vol. 90, November. 2013, pp. 1488-1492.
[33] R.H. Brodbelt, W.J. O`Brien, P.L. Fan. "Translucency of dental porcelains." Journal of Dental Research, vol. 59, January. 1980, pp. 70-75.
[34] S.F. Wang, J. Zhang, D.W. Luo, F. Gu, D.N. Tang, Z.L. Dong, G.E.B. Tan, W.X. Que, T.S. Zhang, S. Li, L.B. Kong. "Transparent ceramics: Processing, Materials and Applications." Progress in Solid State Chemistry, vol. 41, January-February. 2013, pp. 20-54.
[35] A. Krell, T. Hutzler, j. Klimke. "Transparent ceramics: transmission physics and consequences for materials selection, manufacturing, and applications." Journal of the European Ceramic Society, vol. 29, February. 2009, pp. 207-21.
[36] J.E. Alaniz, F.G. Perez-Gutierrez, G. Aguilar, J.E. Garay. "Optical properties of transparent nanocrystalline yttria stabilized zirconia." Optical Materials, vol. 32, January. 2009, pp. 62-8.
[37] K.S. Oh, D.Y. Kim. "Shrinkage of large isolated pores during hot isostatic pressing of presintered alumina ceramics." Journal of American Ceramic Society, vol. 78, September. 1995, pp. 2537-40.
[38] K. Tsukuma, I. Yamashita. "Transparent 8 mol% Y2O3–ZrO2 (8Y) Ceramics." Journal of American Ceramic Society, vol. 91, March. 2008, pp. 813-18.
[39] R. Lach, M.M. Buc'ko, K. Haberko, M. Sitarz, K. Cholewa-Kowalska. "From nanometric zirconia powder to transparent polycrystal." Journal of the European Ceramic Society, vol. 34, December. 2014, pp. 4321-26.
[40] Y.W. Hsu, K.H. Yang, K.M. Chang, S.W. Yeh, M.C. Wang. "Synthesis and crystallization behavior of 3 mol% yttria stabilized tetragonal zirconia poly-crystals (3Y-TZP) nanosized prepared using a simple co-precipitation process." Journal of Alloys Compounds., vol 509, June. 2011, pp. 6864-70.
[41] C. Viazzi, A. Deboni, J. Zoppas Ferreira, J.P. Bonino, F. Ansart. "Synthesis of yttra stabilized zirconia by sol-gel route: influence of experimental parameters and large scale production." Solid State Sciences, vol. 8, September. 2006, p. 1023-28.
[42] I. Gonzalo-Juan, B. Ferrari, M.T. Colomer. "Influence of the urea content on the YSZ hydrothermal synthesis under dilute condition and its role as despersant agent in the post-reaction medium." Journal of European Ceramic Society, vol. 29, December. 2009, pp. 3185-95.
[43] R.E. Juarez, D.G. Lamas, G.E. Lascalea, N.E. Walsoe de Reca. "Synthesis of nanocrystalline zirconia powders for TZP ceramics by a nitrate-citrate combustion route." Journal of European Ceramic Society, vol. 20, February. 2000, pp. 133-38.
[44] A.C. Dodd, P.G. Mccormick. "Synthesis of nanocrystalline ZrO2 powders by mechanochemical reaction ZrCl4 with LiOH." Journal of European Ceramic Society, vol. 22, October . 2002, pp. 1823-29.
[45] H. Zhang, B.N. Kim, K. Morita, H.Y.K. Hiraga, Y. Sakka. "Effect of sintering temperature on optical properties and microstructure of translucent zirconia prepared by high-pressure spark plasma sintering." Science and Technology of Advanced Materials, vol. 12, May. 2011, pp. 1-6.
[46] U. Anselmi-Tamburini, J. N. Woolman, Z. A. Munir. "Transparent nanometric cubic and tetragonal zirconia obtained by high-pressure pulsed electric current sintering." Advanced Functional Materials, vol. 17, 2007, pp. 3267-73.
[47] R. Chaim, R. Marder, C. Estournes. "Optically transparent ceramics by spark plasma sintering of oxide nanoparticles." Scripta Materialia, vol. 63, July. 2010, pp. 211-14.
[48] S.A. Nightingle, D.P. Dunne. "Sintering and grain growth of 3 mol % yttria zirconia in a microwave field." Journal of Materials Science., vol. 31, January. 1996, pp. 5039-43.
[49] J. Binner, K. Annapoorani, A. Paul, I. Santacruz, B. Vaidhyanathan. "Dense nanostructured zirconia by two stage conventional/hybrid microwave sintering." Journal of the European Ceramic Society, vol. 28, December. 2008, pp. 973-77.
[50] A. Borrell, M.D. Salvador, F.L. Penaranda-Foix, J.M. Catala-Civera. "Microwave sintering of zirconia materials: Mechanical and microstructural properties." International Journal of Applied Ceramic Technology, vol. 10, March-April. 2013, pp. 313-20.
[51] M. Mazaheri, R.Z. Hesabi, F. Golestani-Fard, S. Mollazadeh, S. Jafari, S.K. Sadrnezhad. "The effect of conformation method and sintering technique on the densification and grain growth of nanocrystalline 8 mol% yttria-stabilized zirconia." The American Ceramic Society, vol. 92, May. 2009, pp. 990-95.
[52] F. Zhang, K. Vanmeensel, M. Batuk, J. Hadermann, M. Inokoshi, B. Van Meerbeek, I. Naert, J. Vleugels. "Highly-translucent, strong and aging-resistant 3Y-TZP ceramics for dental restoration by grain boundary segregation." Acta Biomaterialia, vol 16, April. 2015, pp. 215-22.
[53] G. Kaya, "Production and characterization of self-colored dental zirconia blocks." Ceramics International, vol. 39, January. 2013, pp. 511-17.
[54] J. Zhao, Z.J. Shen, W.J. Si, X.Z. Wang. "Bio-colored zirconia as dental restoration ceramics." Ceramics International, vol. 39, December. 2013, pp. 9277-83.
[55] L. Shi, W. Chen, X. Zhou, F. Zhao, Y. Li. "Pr-doped 3Y-TZP nanopowders for colored dental restorations: mechanochemical processing, chromaticity and cytotoxicity." Ceramics International, vol. 40, July. 2014, pp. 8569-74.
[56] T.A. Lee. "Dependence of oxygen vacancy concentration in zirconiaon processing parameters and reducing conditions." Physic., Oregon State University: 2000
[57] C. Anghel. "Modified oxygen and hydrogen transport in Zr-based oxides." Division of corrosion science, Department of Materials Science and Engineering., Royal Institute of Technology, KTH: Stockholm, Sweden: 2006
[58] D.J. Kim, J.W. Jang, H.L. Lee. "Effect of tetravalent dopants on raman spectra of tetragonal zirconia." Journal of American Ceramic Society, vol. 80, June. 1997, pp. 1453-61.
[59] H. Zhang, Z. Li, B.N. Kim, K. Morita, H. Yoshida, K. Hiraga, Y. Sakka. "Effect of alumina dopant on transparency of tetragonal zirconia." Journal of Nanomaterials, vol. 2012, 2012, pp. 1-5.
[60] X.D. Chen, G. Hong, W.Z. Xing, Y.N. Wang. "The influence of resin cements on the final color of ceramic veneers." Journal of Prosthodontic Research, vol. 59, July. 2015, pp. 172-7.
[61] I. Cekic-Nagas, F. Egilmez, G. Ergun, K. Bekir-Murat. "Light transmittance of zirconia as a function of thickness and microhardness of resin cements under different thicknesses of zirconia." Medicina Oral Patalogia Oral Y Cirugia Bucal., vol. 18, March. 2013, pp. e212-18.
[62] M. Inokoshi, J. De Munck, S. Minakuchi, B. Van Meerbeek. "Meta-analysis of bonding effectiveness to zirconia." Journal of Dental Research., vol 93, April. 2014, pp. 329-34.
[63] M.J. Kim, K.H. Kim, Y.K. Kim, T.Y. Kwon. "Degree of conversion of two dual-cured resin cements light-irradiated through zirconia ceramic disk." Journal of Advanced Prosthodontics, vol. 5, November. 2013, pp. 464-70.
[64] T.A. Sulaiman, A.A. Abdulmajeed, T.E. Donovan, A.V. Ritter, L.V. Lassila, P.K. Vallittu, T.O. Narhi. "The degree of convenersion of dual-polymerizing cements light polymerized through monolithic of different thickness and types." The Journal of Prosthetic Dentistry, vol. 114, July. 2015, 103-8.
[65] A.K. Lührs, J. De Munck, W. Geurtsen, B. Van Meerbeek. "Composite cements benefit from light-curing." Dental Materials, vol. 30, March. 2014, pp. 292-301.
[66] A.K. Lührs, P. pongprueksa, J. De Munck, W. Geurtsen, B. Van Meerbeek. "Curing mode affects bond strength of adhesively luted composite CAD/CAM restorations to dentin." Dental Materials, vol. 30, March. 2014, p. 281-91.
[67] N. Illie, B. Stawarczyk. "Quantification of the amount of blue light passing through monolithic zirconia with respect to thickness and polymerization conditions." The Journal of Prosthetic Dentistry, vol. 113, February. 2015, p. 114-21.
[68] W.D. Kingery, H.K. Bowen, D.R. Uhlmann. "Introduction to Ceramics", Canada: 1975, pp. 1032.
[69] J. Chevalier, L. Gremillard, A.V. Virkar, D.R. Clarke. "The tetragonal-monoclinic transformation in zirconia: Lessons learned and future trends." Journal of American Ceramic Society, vol. 92, September. 2009, p. 1901-20.
[70] F.F. Lange, "Transformation toughening. Part 3 Experimental observations in the ZrO2-Y2O3 system." Journal of Material Science, vol. 17, January. 1982, pp. 240-46.
[71] M. Yoshimura, T. Noma, K. Kawabata, S. Somiya. "Role of H2O on the degradation process of Y-TZP." Journal of Material Science letter, vol 6, April. 1987, pp. 465-67.
[72] K. Matsui, H. Yoshida, Y. Ikuhara. "Nanocrystalline, ultra-degradation-resistant zirconia: its grain boundary nanostructure and nanochemistry." Scientific Reports, vol. 4, April. 2014, pp. 4758.
[73] F.F. Lange, "Transformation-toughened ZrO2: correlations between grain size control and composition in the system ZrO2-Y2O3." Journal of American Ceramic Society, vol. 69, March. 1986, pp. 240-42.
[74] D. Huang, K.R. Venkatachari, C. Gregory, C. Stangle. "Influence of yttria content on the preparation of nanocrystalline yttria-doped zirconia." Journal of Material Research, vol. 10, March. 1995, pp. 762-73.
[75] K. Sasaki, T. Terai, A. Suzuki, N. Akasaka. "Effect of the Y2O3 concentration in YSZ on the thermophysical property as a thermal shielding material." International Journal of Applied Ceramic Technology, vol. 7, July-Agust. 2010, pp. 518-27.
[76] K. Matsui, N. Ohmichi, M. Ohagi, H. Yoshida, Y. Ikuhara. "Grain boundary segregation-induced phase transformation in yttria-stabilized tetragonal zirconia polycrystal." Journal of Ceramic Society of Japan., vol. 114, March. 2006, pp. 230-37.
[77] K. Matsui, H. Yoshida, Y. Ikuhara. "Grain-boundary structure and microstructure-development mechanism in 2-8 mol% yttria- stabilized zirconia polycrystals." Acta Materialia, vol. 56, April. 2008, pp. 1315-25.
[78] J. Chevalier, L. Gremillard, S. Deville. "Low-temperature degradation of zirconia and implications for biomedical implants." The Annual Review of Materials and Research, vol. 37, April. 2007, pp. 1-32.
[79] I.M. Ross, W.M. Rainforth, D.W. McComb, A.J. Scott, R. Brydson. "The role of trace additions of alumina to yttria–tetragonal zirconia polycrystals (Y–TZP)." Scripta Materialia, vol. 45, September. 2001, pp. 653-60.
[80] J. Li, Y. Liao, W. Li, Q. Wan, Y. Zhao. "Influence of alumina addition on the optical property of zirconia/alumina composite dental ceramics." Journal of Wuhan University of Technology Material Science, December. 2010, pp. 690-95.