**Commenced**in January 2007

**Frequency:**Monthly

**Edition:**International

**Paper Count:**31093

##### A Novel Convergence Accelerator for the LMS Adaptive Algorithm

**Authors:**
Jeng-Shin Sheu,
Jenn-Kaie Lain,
Tai-Kuo Woo,
Jyh-Horng Wen

**Abstract:**

**Keywords:**
Markov Chain,
LMS,
accelerator,
convergence rate

**Digital Object Identifier (DOI):**
doi.org/10.5281/zenodo.1327734

**References:**

[1] S. Gazor, "Predictions in LMS-type adaptive algorithms for smoothly time-varying environments," IEEE Trans. Signal Process., vol. 47, no. 7, pp. 1735-1739, Jun. 1999.

[2] D. G. Manolakis, V. K. Ingle, and S. M.Kogan, Statistical and Adaptive Signal Processing. New York: McGraw-Hill Int. Editions, 2000.

[3] Haykin, S.: ÔÇÿAdaptive Filter Theory- (Prentice Hall, 1995.)

[4] V. Solo and X. Kong, Adaptive Signal Processing Algorithms: Stability and Performance. Englewood Cliffs, NJ: Prentice-Hall, 1995.

[5] Evans, J. B., Xue, P. and Liu, B.: ÔÇÿAnalysis and implementation of variable step size adaptive algorithm-, IEEE Trans. Signal Processing, 1993, vol. 41, pp. 2517-2535.

[6] Aboulnasr, T. and Mayyas, K.: ÔÇÿA robust variable step-size LMS-type algorithm: Analysis and simulations-, IEEE Trans. Signal Processing, 1997, vol. 45, pp. 631-639.

[7] Hosur, S. and Tewfik, A. H., "Wavelet transform domain LMS algorithm," Proc. ICASSP, April 1993, Minneapolis, Minnesota, USA, pp. 508-510.

[8] Erdol, N. and Basbug, F., "Performance of wavelet transform based adaptive filters-. Proc.ICASSP, April 1993, Minneapolis, Minnesota, USA, pp. 500-503.

[9] Narayan, S. S., Peterson, A. M. and Narashima, M. J., "Transform domain LMS algorithm", IEEE Trans. Acoust., Speech, Signal Processing, June. 1983, vol. 31, pp. 4609-615.

[10] Widrow, B., "Fundamental relations between the LMS algorithm and the DFT," IEEE Trans. Circuits Syst., vol. CAS-34, pp. 814-819.

[11] Von Neumann, J., Kent, R. H., Bellinson, H. R. and Habt, B. I., "The mean square successive difference,"Ann.Math. Statist. Vol. 12, 1941, pp. 153-162.

[12] Ghosh, M. and Meeden, G.: ÔÇÿOn the non-attainability of Chebychev bounds-, American Statistician, 1977, 31, pp. 35-36.