Search results for: Transverse flux PM linear machine
2692 Kalman Filter Gain Elimination in Linear Estimation
Authors: Nicholas D. Assimakis
Abstract:
In linear estimation, the traditional Kalman filter uses the Kalman filter gain in order to produce estimation and prediction of the n-dimensional state vector using the m-dimensional measurement vector. The computation of the Kalman filter gain requires the inversion of an m x m matrix in every iteration. In this paper, a variation of the Kalman filter eliminating the Kalman filter gain is proposed. In the time varying case, the elimination of the Kalman filter gain requires the inversion of an n x n matrix and the inversion of an m x m matrix in every iteration. In the time invariant case, the elimination of the Kalman filter gain requires the inversion of an n x n matrix in every iteration. The proposed Kalman filter gain elimination algorithm may be faster than the conventional Kalman filter, depending on the model dimensions.
Keywords: Discrete time, linear estimation, Kalman filter, Kalman filter gain.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6452691 Minimizing Energy Consumption in Wireless Sensor Networks using Binary Integer Linear Programming
Authors: Chompunut Jantarasorn, Chutima Prommak
Abstract:
The important issue considered in the widespread deployment of Wireless Sensor Networks (WSNs) is an efficiency of the energy consumption. In this paper, we present a study of the optimal relay station planning problems using Binary Integer Linear Programming (BILP) model to minimize the energy consumption in WSNs. Our key contribution is that the proposed model not only ensures the required network lifetime but also guarantees the radio connectivity at high level of communication quality. Specially, we take into account effects of noise, signal quality limitation and bit error rate characteristics. Numerical experiments were conducted in various network scenarios. We analyzed the effects of different sensor node densities and distribution on the energy consumption.
Keywords: Binary Integer Linear Programming, BILP, Energy consumption, Optimal node placement and Wireless sensor networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22092690 Volterra Filtering Techniques for Removal of Gaussian and Mixed Gaussian-Impulse Noise
Authors: M. B. Meenavathi, K. Rajesh
Abstract:
In this paper, we propose a new class of Volterra series based filters for image enhancement and restoration. Generally the linear filters reduce the noise and cause blurring at the edges. Some nonlinear filters based on median operator or rank operator deal with only impulse noise and fail to cancel the most common Gaussian distributed noise. A class of second order Volterra filters is proposed to optimize the trade-off between noise removal and edge preservation. In this paper, we consider both the Gaussian and mixed Gaussian-impulse noise to test the robustness of the filter. Image enhancement and restoration results using the proposed Volterra filter are found to be superior to those obtained with standard linear and nonlinear filters.
Keywords: Gaussian noise, Image enhancement, Imagerestoration, Linear filters, Nonlinear filters, Volterra series.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27382689 A Combined Meta-Heuristic with Hyper-Heuristic Approach to Single Machine Production Scheduling Problem
Authors: C. E. Nugraheni, L. Abednego
Abstract:
This paper is concerned with minimization of mean tardiness and flow time in a real single machine production scheduling problem. Two variants of genetic algorithm as metaheuristic are combined with hyper-heuristic approach are proposed to solve this problem. These methods are used to solve instances generated with real world data from a company. Encouraging results are reported.
Keywords: Hyper-heuristics, evolutionary algorithms, production scheduling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24182688 Load Transfer Mechanism Based Unified Strut-and-Tie Modeling for Design of Concrete Beams
Authors: Ahmed, M., Yasser A., Mahmoud H., Ahmed, A., Abdulla M. S., Nazar, S.
Abstract:
Strut-and-Tie Models (STM) for the design of concrete beams, comprising of struts, ties, nodes as the basic tools, is conceptually simple, but its realization for complex concrete structure is not straightforward and depends on flow of internal forces in the structure. STM technique has won wide acceptance for deep member and shear design. STM technique is a unified approach that considers all load effects (bending, axial, shear, and torsion) simultaneously, not just applicable to shear loading only. The present study is to portray Strut-and-Tie Modeling based on Load-Transfer-Mechanisms as a unified method to analyze, design and detailing for deep and slender concrete beams. Three shear span- effective depth ratio (a/ d) are recommended for the modeling of STM elements corresponding to dominant load paths. The study also discusses the research work conduct on effective stress of concrete, tie end anchorage, and transverse reinforcement demand under different load transfer mechanism. It is also highlighted that to make the STM versatile tool for design of beams applicable to all shear spans, the effective stress of concrete and, transverse reinforcement demand, inclined angle of strut, and anchorage requirements of tie bars is required to be correlated with respect to load transfer mechanism. The country code provisions are to be modified and updated to apply for generalized design of concrete deep and slender member using load transfer mechanism based STM technique. Examples available in literature are reanalyzed with refined STM based on load transfer mechanisms and results are compared. It is concluded from the results that proposed approach will require true reinforcement demand depending on dominant force transfer action in concrete beam.
Keywords: Deep member, Load transfer mechanism, Strut-and-Tie Model, Strut, Truss.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 59932687 Optimal Linear Quadratic Digital Tracker for the Discrete-Time Proper System with an Unknown Disturbance
Authors: Jason Sheng-Hong Tsai, Faezeh Ebrahimzadeh, Min-Ching Chung, Shu-Mei Guo, Leang-San Shieh, Tzong-Jiy Tsai, Li Wang
Abstract:
In this paper, we first construct a new state and disturbance estimator using discrete-time proportional plus integral observer to estimate the system state and the unknown external disturbance for the discrete-time system with an input-to-output direct-feedthrough term. Then, the generalized optimal linear quadratic digital tracker design is applied to construct a proportional plus integral observer-based tracker for the system with an unknown external disturbance to have a desired tracking performance. Finally, a numerical simulation is given to demonstrate the effectiveness of the new application of our proposed approach.
Keywords: Optimal linear quadratic tracker, proportional plus integral observer, state estimator, disturbance estimator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12952686 Building a Trend Based Segmentation Method with SVR Model for Stock Turning Detection
Authors: Jheng-Long Wu, Pei-Chann Chang, Yi-Fang Pan
Abstract:
This research focus on developing a new segmentation method for improving forecasting model which is call trend based segmentation method (TBSM). Generally, the piece-wise linear representation (PLR) can finds some of pair of trading points is well for time series data, but in the complicated stock environment it is not well for stock forecasting because of the stock has more trends of trading. If we consider the trends of trading in stock price for the trading signal which it will improve the precision of forecasting model. Therefore, a TBSM with SVR model used to detect the trading points for various stocks of Taiwanese and America under different trend tendencies. The experimental results show our trading system is more profitable and can be implemented in real time of stock market
Keywords: Trend based segmentation method, support vector machine, turning detection, stock forecasting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31712685 Customer Churn Prediction Using Four Machine Learning Algorithms Integrating Feature Selection and Normalization in the Telecom Sector
Authors: Alanoud Moraya Aldalan, Abdulaziz Almaleh
Abstract:
A crucial part of maintaining a customer-oriented business in the telecommunications industry is understanding the reasons and factors that lead to customer churn. Competition between telecom companies has greatly increased in recent years, which has made it more important to understand customers’ needs in this strong market. For those who are looking to turn over their service providers, understanding their needs is especially important. Predictive churn is now a mandatory requirement for retaining customers in the telecommunications industry. Machine learning can be used to accomplish this. Churn Prediction has become a very important topic in terms of machine learning classification in the telecommunications industry. Understanding the factors of customer churn and how they behave is very important to building an effective churn prediction model. This paper aims to predict churn and identify factors of customers’ churn based on their past service usage history. Aiming at this objective, the study makes use of feature selection, normalization, and feature engineering. Then, this study compared the performance of four different machine learning algorithms on the Orange dataset: Logistic Regression, Random Forest, Decision Tree, and Gradient Boosting. Evaluation of the performance was conducted by using the F1 score and ROC-AUC. Comparing the results of this study with existing models has proven to produce better results. The results showed the Gradients Boosting with feature selection technique outperformed in this study by achieving a 99% F1-score and 99% AUC, and all other experiments achieved good results as well.
Keywords: Machine Learning, Gradient Boosting, Logistic Regression, Churn, Random Forest, Decision Tree, ROC, AUC, F1-score.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4152684 Probabilistic Bayesian Framework for Infrared Face Recognition
Authors: Moulay A. Akhloufi, Abdelhakim Bendada
Abstract:
Face recognition in the infrared spectrum has attracted a lot of interest in recent years. Many of the techniques used in infrared are based on their visible counterpart, especially linear techniques like PCA and LDA. In this work, we introduce a probabilistic Bayesian framework for face recognition in the infrared spectrum. In the infrared spectrum, variations can occur between face images of the same individual due to pose, metabolic, time changes, etc. Bayesian approaches permit to reduce intrapersonal variation, thus making them very interesting for infrared face recognition. This framework is compared with classical linear techniques. Non linear techniques we developed recently for infrared face recognition are also presented and compared to the Bayesian face recognition framework. A new approach for infrared face extraction based on SVM is introduced. Experimental results show that the Bayesian technique is promising and lead to interesting results in the infrared spectrum when a sufficient number of face images is used in an intrapersonal learning process.
Keywords: Face recognition, biometrics, probabilistic imageprocessing, infrared imaging.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18832683 Support Vector Machine Prediction Model of Early-stage Lung Cancer Based on Curvelet Transform to Extract Texture Features of CT Image
Authors: Guo Xiuhua, Sun Tao, Wu Haifeng, He Wen, Liang Zhigang, Zhang Mengxia, Guo Aimin, Wang Wei
Abstract:
Purpose: To explore the use of Curvelet transform to extract texture features of pulmonary nodules in CT image and support vector machine to establish prediction model of small solitary pulmonary nodules in order to promote the ratio of detection and diagnosis of early-stage lung cancer. Methods: 2461 benign or malignant small solitary pulmonary nodules in CT image from 129 patients were collected. Fourteen Curvelet transform textural features were as parameters to establish support vector machine prediction model. Results: Compared with other methods, using 252 texture features as parameters to establish prediction model is more proper. And the classification consistency, sensitivity and specificity for the model are 81.5%, 93.8% and 38.0% respectively. Conclusion: Based on texture features extracted from Curvelet transform, support vector machine prediction model is sensitive to lung cancer, which can promote the rate of diagnosis for early-stage lung cancer to some extent.Keywords: CT image, Curvelet transform, Small pulmonary nodules, Support vector machines, Texture extraction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27702682 Complex Condition Monitoring System of Aircraft Gas Turbine Engine
Authors: A. M. Pashayev, D. D. Askerov, C. Ardil, R. A. Sadiqov, P. S. Abdullayev
Abstract:
Researches show that probability-statistical methods application, especially at the early stage of the aviation Gas Turbine Engine (GTE) technical condition diagnosing, when the flight information has property of the fuzzy, limitation and uncertainty is unfounded. Hence the efficiency of application of new technology Soft Computing at these diagnosing stages with the using of the Fuzzy Logic and Neural Networks methods is considered. According to the purpose of this problem training with high accuracy of fuzzy multiple linear and non-linear models (fuzzy regression equations) which received on the statistical fuzzy data basis is made. For GTE technical condition more adequate model making dynamics of skewness and kurtosis coefficients- changes are analysed. Researches of skewness and kurtosis coefficients values- changes show that, distributions of GTE workand output parameters of the multiple linear and non-linear generalised models at presence of noise measured (the new recursive Least Squares Method (LSM)). The developed GTE condition monitoring system provides stage-by-stage estimation of engine technical conditions. As application of the given technique the estimation of the new operating aviation engine technical condition was made.Keywords: aviation gas turbine engine, technical condition, fuzzy logic, neural networks, fuzzy statistics
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25472681 Measurements of MRI R2* Relaxation Rate in Liver and Muscle: Animal Model
Authors: Chiung-Yun Chang, Po-Chou Chen, Jiun-Shiang Tzeng, Ka-Wai Mac, Chia-Chi Hsiao, Jo-Chi Jao
Abstract:
This study was aimed to measure effective transverse relaxation rates (R2*) in the liver and muscle of normal New Zealand White (NZW) rabbits. R2* relaxation rate has been widely used in various hepatic diseases for iron overload by quantifying iron contents in liver. R2* relaxation rate is defined as the reciprocal of T2* relaxation time and mainly depends on the constituents of tissue. Different tissues would have different R2* relaxation rates. The signal intensity decay in Magnetic resonance imaging (MRI) may be characterized by R2* relaxation rates. In this study, a 1.5T GE Signa HDxt whole body MR scanner equipped with an 8-channel high resolution knee coil was used to observe R2* values in NZW rabbit’s liver and muscle. Eight healthy NZW rabbits weighted 2 ~ 2.5 kg were recruited. After anesthesia using Zoletil 50 and Rompun 2% mixture, the abdomen of rabbit was landmarked at the center of knee coil to perform 3-plane localizer scan using fast spoiled gradient echo (FSPGR) pulse sequence. Afterwards, multi-planar fast gradient echo (MFGR) scans were performed with 8 various echo times (TEs) to acquire images for R2* measurements. Regions of interest (ROIs) at liver and muscle were measured using Advantage workstation. Finally, the R2* was obtained by a linear regression of ln(sı) on TE. The results showed that the longer the echo time, the smaller the signal intensity. The R2* values of liver and muscle were 44.8 ± 10.9 s-1 and 37.4 ± 9.5 s-1, respectively. It implies that the iron concentration of liver is higher than that of muscle. In conclusion, the more the iron contents in tissue, the higher the R2*. The correlations between R2* and iron content in NZW rabbits might be valuable for further exploration.Keywords: Liver, MRI, multi-planar fast gradient echo, muscle, R2* relaxation rate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21512680 Quality Classification and Monitoring Using Adaptive Metric Distance and Neural Networks: Application in Pickling Process
Authors: S. Bouhouche, M. Lahreche, S. Ziani, J. Bast
Abstract:
Modern manufacturing facilities are large scale, highly complex, and operate with large number of variables under closed loop control. Early and accurate fault detection and diagnosis for these plants can minimise down time, increase the safety of plant operations, and reduce manufacturing costs. Fault detection and isolation is more complex particularly in the case of the faulty analog control systems. Analog control systems are not equipped with monitoring function where the process parameters are continually visualised. In this situation, It is very difficult to find the relationship between the fault importance and its consequences on the product failure. We consider in this paper an approach to fault detection and analysis of its effect on the production quality using an adaptive centring and scaling in the pickling process in cold rolling. The fault appeared on one of the power unit driving a rotary machine, this machine can not track a reference speed given by another machine. The length of metal loop is then in continuous oscillation, this affects the product quality. Using a computerised data acquisition system, the main machine parameters have been monitored. The fault has been detected and isolated on basis of analysis of monitored data. Normal and faulty situation have been obtained by an artificial neural network (ANN) model which is implemented to simulate the normal and faulty status of rotary machine. Correlation between the product quality defined by an index and the residual is used to quality classification.Keywords: Modeling, fault detection and diagnosis, parameters estimation, neural networks, Fault Detection and Diagnosis (FDD), pickling process.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15792679 FEA-Based Calculation of Performances of IPM Machines with Five Topologies for Hybrid- Electric Vehicle Traction
Authors: Aimeng Wang, Dejun Ma, Hui Wang
Abstract:
The paper presents a detailed calculation of characteristic of five different topology permanent magnet machines for high performance traction including hybrid -electric vehicles using finite element analysis (FEA) method. These machines include V-shape single layer interior PM, W-shape single-layer interior PM, Segment interior PM and surface PM on the rotor and with distributed winding on the stator. The performance characteristics which include the back-emf voltage and its harmonic, magnet mass, iron loss and ripple torque are compared and analyzed. One of a 7.5kW IPM prototype was tested and verified finite-element analysis results. The aim of the paper is given some guidance and reference for machine designer which are interested in IPM machine selection for high performance traction application.
Keywords: Interior permanent magnet machine, finite-element analysis (FEA), five topologies, electric vehicle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 39272678 Using Tabu Search to Analyze the Mauritian Economic Sectors
Authors: J. Cheeneebash, V. Beeharry, A. Gopaul
Abstract:
The aim of this paper is to express the input-output matrix as a linear ordering problem which is classified as an NP-hard problem. We then use a Tabu search algorithm to find the best permutation among sectors in the input-output matrix that will give an optimal solution. This optimal permutation can be useful in designing policies and strategies for economists and government in their goal of maximizing the gross domestic product.Keywords: Input-Output matrix, linear ordering problem, Tabusearch.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14972677 A New Derivative-Free Quasi-Secant Algorithm For Solving Non-Linear Equations
Authors: F. Soleymani, M. Sharifi
Abstract:
Most of the nonlinear equation solvers do not converge always or they use the derivatives of the function to approximate the root of such equations. Here, we give a derivative-free algorithm that guarantees the convergence. The proposed two-step method, which is to some extent like the secant method, is accompanied with some numerical examples. The illustrative instances manifest that the rate of convergence in proposed algorithm is more than the quadratically iterative schemes.Keywords: Non-linear equation, iterative methods, derivative-free, convergence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17822676 Development for the Evaluation Index of an Anesthesia Depth using the Bispectrum Analysis
Authors: Soo-young Ye, Jun-mo Park, Jae-hyung Kim, Jae-hee Jung, Ah-young Jeon, In-cheol Kim, Jung-man Son, Ki-gon Nam, Seong-wan Baik, Jung-hoon Ro, Gye-rok Jeon
Abstract:
The linear SEF (Spectral Edge Frequency) parameter and spectrum analysis method can not reflect the non-linear of EEG. This method can not contribute to acquire real time analysis and obtain a high confidence in the clinic due to low discrimination. To solve the problems, the development of a new index is carried out using the bispectrum analyzing the EEG(electroencephalogram) including the non-linear characteristic. After analyzing the bispectrum of the 2 dimension, the most significant power spectrum density peaks appeared abundantly at the specific area in awakening and anesthesia state. These points are utilized to create the new index since many peaks appeared at the specific area in the frequency coordinate. The measured range of an index was 0-100. An index is 20-50 at an anesthesia, while the index is 90-60 at the awake. New index could afford to effectively discriminate the awake and anesthesia state.Keywords: Bispectrum, anesthesia depth, EEG, SEF.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16072675 Glass Bottle Inspector Based on Machine Vision
Authors: Huanjun Liu, Yaonan Wang, Feng Duan
Abstract:
This text studies glass bottle intelligent inspector based machine vision instead of manual inspection. The system structure is illustrated in detail in this paper. The text presents the method based on watershed transform methods to segment the possible defective regions and extract features of bottle wall by rules. Then wavelet transform are used to exact features of bottle finish from images. After extracting features, the fuzzy support vector machine ensemble is putted forward as classifier. For ensuring that the fuzzy support vector machines have good classification ability, the GA based ensemble method is used to combining the several fuzzy support vector machines. The experiments demonstrate that using this inspector to inspect glass bottles, the accuracy rate may reach above 97.5%.Keywords: Intelligent Inspection, Support Vector Machines, Ensemble Methods, watershed transform, Wavelet Transform
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 39012674 Closed-Form Solutions for Nanobeams Based On the Nonlocal Euler-Bernoulli Theory
Authors: Francesco Marotti de Sciarra, Raffaele Barretta
Abstract:
Starting from nonlocal continuum mechanics, a thermodynamically new nonlocal model of Euler-Bernoulli nanobeams is provided. The nonlocal variational formulation is consistently provided and the governing differential equation for transverse displacement is presented. Higher-order boundary conditions are then consistently derived. An example is contributed in order to show the effectiveness of the proposed model.
Keywords: Bernoulli-Euler beams, Nanobeams, nonlocal elasticity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23362673 On Algebraic Structure of Improved Gauss-Seidel Iteration
Authors: O. M. Bamigbola, A. A. Ibrahim
Abstract:
Analysis of real life problems often results in linear systems of equations for which solutions are sought. The method to employ depends, to some extent, on the properties of the coefficient matrix. It is not always feasible to solve linear systems of equations by direct methods, as such the need to use an iterative method becomes imperative. Before an iterative method can be employed to solve a linear system of equations there must be a guaranty that the process of solution will converge. This guaranty, which must be determined apriori, involve the use of some criterion expressible in terms of the entries of the coefficient matrix. It is, therefore, logical that the convergence criterion should depend implicitly on the algebraic structure of such a method. However, in deference to this view is the practice of conducting convergence analysis for Gauss- Seidel iteration on a criterion formulated based on the algebraic structure of Jacobi iteration. To remedy this anomaly, the Gauss- Seidel iteration was studied for its algebraic structure and contrary to the usual assumption, it was discovered that some property of the iteration matrix of Gauss-Seidel method is only diagonally dominant in its first row while the other rows do not satisfy diagonal dominance. With the aid of this structure we herein fashion out an improved version of Gauss-Seidel iteration with the prospect of enhancing convergence and robustness of the method. A numerical section is included to demonstrate the validity of the theoretical results obtained for the improved Gauss-Seidel method.
Keywords: Linear system of equations, Gauss-Seidel iteration, algebraic structure, convergence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29342672 Application of the Central-Difference with Half- Sweep Gauss-Seidel Method for Solving First Order Linear Fredholm Integro-Differential Equations
Authors: E. Aruchunan, J. Sulaiman
Abstract:
The objective of this paper is to analyse the application of the Half-Sweep Gauss-Seidel (HSGS) method by using the Half-sweep approximation equation based on central difference (CD) and repeated trapezoidal (RT) formulas to solve linear fredholm integro-differential equations of first order. The formulation and implementation of the Full-Sweep Gauss-Seidel (FSGS) and Half- Sweep Gauss-Seidel (HSGS) methods are also presented. The HSGS method has been shown to rapid compared to the FSGS methods. Some numerical tests were illustrated to show that the HSGS method is superior to the FSGS method.Keywords: Integro-differential equations, Linear fredholm equations, Finite difference, Quadrature formulas, Half-Sweep iteration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18192671 Assessment of Ultra-High Cycle Fatigue Behavior of EN-GJL-250 Cast Iron Using Ultrasonic Fatigue Testing Machine
Authors: Saeedeh Bakhtiari, Johannes Depessemier, Stijn Hertelé, Wim De Waele
Abstract:
High cycle fatigue comprising up to 107 load cycles has been the subject of many studies, and the behavior of many materials was recorded adequately in this regime. However, many applications involve larger numbers of load cycles during the lifetime of machine components. In this ultra-high cycle regime, other failure mechanisms play, and the concept of a fatigue endurance limit (assumed for materials such as steel) is often an oversimplification of reality. When machine component design demands a high geometrical complexity, cast iron grades become interesting candidate materials. Grey cast iron is known for its low cost, high compressive strength, and good damping properties. However, the ultra-high cycle fatigue behavior of cast iron is poorly documented. The current work focuses on the ultra-high cycle fatigue behavior of EN-GJL-250 (GG25) grey cast iron by developing an ultrasonic (20 kHz) fatigue testing system. Moreover, the testing machine is instrumented to measure the temperature and the displacement of the specimen, and to control the temperature. The high resonance frequency allowed to assess the behavior of the cast iron of interest within a matter of days for ultra-high numbers of cycles, and repeat the tests to quantify the natural scatter in fatigue resistance.Keywords: GG25, cast iron, ultra-high cycle fatigue, ultrasonic test.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8072670 Optimal Production Planning in Aromatic Coconuts Supply Chain Based On Mixed-Integer Linear Programming
Authors: Chaimongkol Limpianchob
Abstract:
This work addresses the problem of production planning that arises in the production of aromatic coconuts from Samudsakhorn province in Thailand. The planning involves the forwarding of aromatic coconuts from the harvest areas to the factory, which is classified into two groups; self-owned areas and contracted areas, the decisions of aromatic coconuts flow in the plant, and addressing a question of which warehouse will be in use. The problem is formulated as a mixed-integer linear programming model within supply chain management framework. The objective function seeks to minimize the total cost including the harvesting, labor and inventory costs. Constraints on the system include the production activities in the company and demand requirements. Numerical results are presented to demonstrate the feasibility of coconuts supply chain model compared with base case.
Keywords: Aromatic coconut, supply chain management, production planning, mixed-integer linear programming.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27652669 Investigation of Heat Transfer by Natural Convection in an Open Channel
Authors: Mahmoud S. Ahmed, Hany A. Mohamed, Mohamed A. Omara, Mohamed F. Abdeen
Abstract:
Experimental study of natural convection heat transfer inside smooth and rough surfaces of vertical and inclined equilateral triangular channels of different inclination angles with a uniformly heated surface are performed. The inclination angle is changed from 15º to 90º. Smooth and rough surface of average roughness (0.02mm) are used and their effect on the heat transfer characteristics are studied. The local and average heat transfer coefficients and Nusselt number are obtained for smooth and rough channels at different heat flux values, different inclination angles and different Rayleigh numbers (Ra) 6.48 × 105 ≤ Ra ≤ 4.78 × 106. The results show that the local Nusselt number decreases with increase of axial distance from the lower end of the triangular channel to a point near the upper end of channel, and then, it slightly increases. Higher values of local Nusselt number for rough channel along the axial distance compared with the smooth channel. The average Nusselt number of rough channel is higher than that of smooth channel by about 8.1% for inclined case at θ = 45o and 10% for vertical case. The results obtained are correlated using dimensionless groups for both rough and smooth surfaces of the inclined and vertical triangular channels.
Keywords: Natural heat transfer convection, constant heat flux, open channels, heat transfer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23642668 Liquid Chromatography Microfluidics for Detection and Quantification of Urine Albumin Using Linear Regression Method
Authors: Patricia B. Cruz, Catrina Jean G. Valenzuela, Analyn N. Yumang
Abstract:
Nearly a hundred per million of the Filipino population is diagnosed with Chronic Kidney Disease (CKD). The early stage of CKD has no symptoms and can only be discovered once the patient undergoes urinalysis. Over the years, different methods were discovered and used for the quantification of the urinary albumin such as the immunochemical assays where most of these methods require large machinery that has a high cost in maintenance and resources, and a dipstick test which is yet to be proven and is still debated as a reliable method in detecting early stages of microalbuminuria. This research study involves the use of the liquid chromatography concept in microfluidic instruments with biosensor as a means of separation and detection respectively, and linear regression to quantify human urinary albumin. The researchers’ main objective was to create a miniature system that quantifies and detect patients’ urinary albumin while reducing the amount of volume used per five test samples. For this study, 30 urine samples of unknown albumin concentrations were tested using VITROS Analyzer and the microfluidic system for comparison. Based on the data shared by both methods, the actual vs. predicted regression were able to create a positive linear relationship with an R2 of 0.9995 and a linear equation of y = 1.09x + 0.07, indicating that the predicted values and actual values are approximately equal. Furthermore, the microfluidic instrument uses 75% less in total volume – sample and reagents combined, compared to the VITROS Analyzer per five test samples.
Keywords: Chronic kidney disease, microfluidics, linear regression, VITROS analyzer, urinary albumin.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8762667 Gravitational Search Algorithm (GSA) Optimized SSSC Based Facts Controller to Improve Power System Oscillation Stability
Authors: Gayadhar Panda, P. K. Rautraya
Abstract:
In this paper, an investigation into the use of modified Genetic Algorithm optimized SSSC based controller to aid damping of low frequency inter-area oscillations in power systems is presented. Controller design is formulated as a nonlinear constrained optimization problem and modified Genetic Algorithm (MGA) is employed to search for the optimal controller parameters. For evaluation of effectiveness and robustness of proposed controllers, the performance was tested on multi-machine system subjected to different disturbances, loading conditions and system parameter variations. Simulation results are presented to show the fine performance of the proposed SSSC controller in damping the critical modes without significantly deteriorating the damping characteristics of other modes in multi-machine power system.
Keywords: SSSC, FACTS, Controller Design, Damping of Oscillations, Multi-machine system, Modified Genetic Algorithm (MGA).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20392666 Steady State Creep Behavior of Functionally Graded Thick Cylinder
Authors: Tejeet Singh, Harmanjit Singh
Abstract:
Creep behavior of thick-walled functionally graded cylinder consisting of AlSiC and subjected to internal pressure and high temperature has been analyzed. The functional relationship between strain rate with stress can be described by the well known threshold stress based creep law with a stress exponent of five. The effect of imposing non-linear particle gradient on the distribution of creep stresses in the thick-walled functionally graded composite cylinder has been investigated. The study revealed that for the assumed non-linear particle distribution, the radial stress decreases throughout the cylinder, whereas the tangential, axial and effective stresses have averaging effect. The strain rates in the functionally graded composite cylinder could be reduced to significant extent by employing non-linear gradient in the distribution of reinforcement.
Keywords: Functionally Graded Material, Pressure, Steady State Creep, Thick-Cylinder.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19762665 Some Results on Preconditioned Modified Accelerated Overrelaxation Method
Authors: Guangbin Wang, Deyu Sun, Fuping Tan
Abstract:
In this paper, we present new preconditioned modified accelerated overrelaxation (MAOR) method for solving linear systems. We compare the spectral radii of the iteration matrices of the preconditioned and the original methods. The comparison results show that the preconditioned MAOR method converges faster than the MAOR method whenever the MAOR method is convergent. Finally, we give one numerical example to confirm our theoretical results.
Keywords: preconditioned, MAOR method, linear system, convergence, comparison.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16492664 Comparison of Performance between Different SVM Kernels for the Identification of Adult Video
Authors: Hajar Bouirouga, Sanaa El Fkihi , Abdeilah Jilbab, Driss Aboutajdine
Abstract:
In this paper we propose a method for recognition of adult video based on support vector machine (SVM). Different kernel features are proposed to classify adult videos. SVM has an advantage that it is insensitive to the relative number of training example in positive (adult video) and negative (non adult video) classes. This advantage is illustrated by comparing performance between different SVM kernels for the identification of adult video.Keywords: Skin detection, Support vector machine, Pornographic videos, Feature extraction, Video filtering, Classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23092663 Effect of Prandtl Number on Natural Convection Heat Transfer from a Heated Semi-Circular Cylinder
Authors: Avinash Chandra, R. P. Chhabra
Abstract:
Natural convection heat transfer from a heated horizontal semi-circular cylinder (flat surface upward) has been investigated for the following ranges of conditions; Grashof number, and Prandtl number. The governing partial differential equations (continuity, Navier-Stokes and energy equations) have been solved numerically using a finite volume formulation. In addition, the role of the type of the thermal boundary condition imposed at cylinder surface, namely, constant wall temperature (CWT) and constant heat flux (CHF) are explored. Natural convection heat transfer from a heated horizontal semi-circular cylinder (flat surface upward) has been investigated for the following ranges of conditions; Grashof number, and Prandtl number, . The governing partial differential equations (continuity, Navier-Stokes and energy equations) have been solved numerically using a finite volume formulation. In addition, the role of the type of the thermal boundary condition imposed at cylinder surface, namely, constant wall temperature (CWT) and constant heat flux (CHF) are explored. The resulting flow and temperature fields are visualized in terms of the streamline and isotherm patterns in the proximity of the cylinder. The flow remains attached to the cylinder surface over the range of conditions spanned here except that for and ; at these conditions, a separated flow region is observed when the condition of the constant wall temperature is prescribed on the surface of the cylinder. The heat transfer characteristics are analyzed in terms of the local and average Nusselt numbers. The maximum value of the local Nusselt number always occurs at the corner points whereas it is found to be minimum at the rear stagnation point on the flat surface. Overall, the average Nusselt number increases with Grashof number and/ or Prandtl number in accordance with the scaling considerations. The numerical results are used to develop simple correlations as functions of Grashof and Prandtl number thereby enabling the interpolation of the present numerical results for the intermediate values of the Prandtl or Grashof numbers for both thermal boundary conditions.Keywords: Constant heat flux, Constant surface temperature, Grashof number, natural convection, Prandtl number, Semi-circular cylinder
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3418