Search results for: SEF.
6 Model Parameters Estimating on Lyman–Kutcher–Burman Normal Tissue Complication Probability for Xerostomia on Head and Neck Cancer
Authors: Tsair-Fwu Lee , Hui-Min Ting , Pei-Ju Chao, Jing-Chuan Jiang, Min-Yuan Chao, Wen-Cheng Chen, Long-Chang Chen, Jia-Ming Wu
Abstract:
The purpose of this study is to derive parameters estimating for the Lyman–Kutcher–Burman (LKB) normal tissue complication probability (NTCP) model using analysis of scintigraphy assessments and quality of life (QoL) measurement questionnaires for the parotid gland (xerostomia). In total, 31 patients with head-and-neck (HN) cancer were enrolled. Salivary excretion factor (SEF) and EORTC QLQ-H&N35 questionnaires datasets are used for the NTCP modeling to describe the incidence of grade 4 xerostomia. Assuming that n= 1, NTCP fitted parameters are given as TD50= 43.6 Gy, m= 0.18 in SEF analysis, and as TD50= 44.1 Gy, m= 0.11 in QoL measurements, respectively. SEF and QoL datasets can validate the Quantitative Analyses of Normal Tissue Effects in the Clinic (QUANTEC) guidelines well, resulting in NPV-s of 100% for the both datasets and suggests that the QUANTEC 25/20Gy gland-spared guidelines are suitable for clinical used for the HN cohort to effectively avoid xerostomia.Keywords: HN, NTCP, SEF, QoL, QUANTEC
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21305 Ensemble Approach for Predicting Student's Academic Performance
Authors: L. A. Muhammad, M. S. Argungu
Abstract:
Educational data mining (EDM) has recorded substantial considerations. Techniques of data mining in one way or the other have been proposed to dig out out-of-sight knowledge in educational data. The result of the study got assists academic institutions in further enhancing their process of learning and methods of passing knowledge to students. Consequently, the performance of students boasts and the educational products are by no doubt enhanced. This study adopted a student performance prediction model premised on techniques of data mining with Students' Essential Features (SEF). SEF are linked to the learner's interactivity with the e-learning management system. The performance of the student's predictive model is assessed by a set of classifiers, viz. Bayes Network, Logistic Regression, and Reduce Error Pruning Tree (REP). Consequently, ensemble methods of Bagging, Boosting, and Random Forest (RF) are applied to improve the performance of these single classifiers. The study reveals that the result shows a robust affinity between learners' behaviors and their academic attainment. Result from the study shows that the REP Tree and its ensemble record the highest accuracy of 83.33% using SEF. Hence, in terms of the Receiver Operating Curve (ROC), boosting method of REP Tree records 0.903, which is the best. This result further demonstrates the dependability of the proposed model.
Keywords: Ensemble, bagging, Random Forest, boosting, data mining, classifiers, machine learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8434 Fuzzy based Security Threshold Determining for the Statistical En-Route Filtering in Sensor Networks
Authors: Hae Young Lee, Tae Ho Cho
Abstract:
In many sensor network applications, sensor nodes are deployed in open environments, and hence are vulnerable to physical attacks, potentially compromising the node's cryptographic keys. False sensing report can be injected through compromised nodes, which can lead to not only false alarms but also the depletion of limited energy resource in battery powered networks. Ye et al. proposed a statistical en-route filtering scheme (SEF) to detect such false reports during the forwarding process. In this scheme, the choice of a security threshold value is important since it trades off detection power and overhead. In this paper, we propose a fuzzy logic for determining a security threshold value in the SEF based sensor networks. The fuzzy logic determines a security threshold by considering the number of partitions in a global key pool, the number of compromised partitions, and the energy level of nodes. The fuzzy based threshold value can conserve energy, while it provides sufficient detection power.
Keywords: Fuzzy logic, security, sensor network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16013 Development for the Evaluation Index of an Anesthesia Depth using the Bispectrum Analysis
Authors: Soo-young Ye, Jun-mo Park, Jae-hyung Kim, Jae-hee Jung, Ah-young Jeon, In-cheol Kim, Jung-man Son, Ki-gon Nam, Seong-wan Baik, Jung-hoon Ro, Gye-rok Jeon
Abstract:
The linear SEF (Spectral Edge Frequency) parameter and spectrum analysis method can not reflect the non-linear of EEG. This method can not contribute to acquire real time analysis and obtain a high confidence in the clinic due to low discrimination. To solve the problems, the development of a new index is carried out using the bispectrum analyzing the EEG(electroencephalogram) including the non-linear characteristic. After analyzing the bispectrum of the 2 dimension, the most significant power spectrum density peaks appeared abundantly at the specific area in awakening and anesthesia state. These points are utilized to create the new index since many peaks appeared at the specific area in the frequency coordinate. The measured range of an index was 0-100. An index is 20-50 at an anesthesia, while the index is 90-60 at the awake. New index could afford to effectively discriminate the awake and anesthesia state.Keywords: Bispectrum, anesthesia depth, EEG, SEF.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16422 Constitutive Equations for Human Saphenous Vein Coronary Artery Bypass Graft
Authors: Hynek Chlup, Lukas Horny, Rudolf Zitny, Svatava Konvickova, Tomas Adamek
Abstract:
Coronary artery bypass grafts (CABG) are widely studied with respect to hemodynamic conditions which play important role in presence of a restenosis. However, papers which concern with constitutive modeling of CABG are lacking in the literature. The purpose of this study is to find a constitutive model for CABG tissue. A sample of the CABG obtained within an autopsy underwent an inflation–extension test. Displacements were recoredered by CCD cameras and subsequently evaluated by digital image correlation. Pressure – radius and axial force – elongation data were used to fit material model. The tissue was modeled as onelayered composite reinforced by two families of helical fibers. The material is assumed to be locally orthotropic, nonlinear, incompressible and hyperelastic. Material parameters are estimated for two strain energy functions (SEF). The first is classical exponential. The second SEF is logarithmic which allows interpretation by means of limiting (finite) strain extensibility. Presented material parameters are estimated by optimization based on radial and axial equilibrium equation in a thick-walled tube. Both material models fit experimental data successfully. The exponential model fits significantly better relationship between axial force and axial strain than logarithmic one.Keywords: Constitutive model, coronary artery bypass graft, digital image correlation, fiber reinforced composite, inflation test, saphenous vein.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16581 Persuasive Communication on Social Egg Freezing in California from a Framing Theory Perspective
Authors: Leila Mohammadi
Abstract:
This paper presents the impact of persuasive communication implemented by fertility clinics websites, and how this information influences women at their decision-making for undertaking this procedure. The influential factors for women decisions to do social egg freezing (SEF) are analyzed from a framing theory perspective, with a specific focus on the impact of persuasive information on women’s decision making. This study follows a quantitative approach. A two-phase survey has been conducted to examine the interest rate to undertake SEF. In the first phase, a questionnaire was available during a month (May 2015) to women to answer whether or not they knew enough information of this process, with a total of 230 answers. The second phase took place in the two last weeks of July 2015. All the respondents were invited to a seminars called ‘All about egg freezing’ and afretwards they were requested to answer the second questionnaire. After the seminar, in which they were given an extensive amount of information about egg freezing, a total of 115 women replied the questionnaire. The collected data during this process were analyzed using descriptive statistics. Most of the respondents changed their opinion in the second questionaire which was after receiving information. Although in the first questionnaire their self-evaluation of having knowledge about this process and the implemented technologies was very high, they realized that they still need to access more information from different sources in order to be able to make a decision. The study reached the conclusion that persuasive and framed information by clinics would affect the decisions of these women. Despite the reasons women have to do egg freezing and their motivations behind it, providing people necessary information and unprejudiced data about this process (such as its positive and negative aspects, requirements, suppositions, possibilities and consequences) would help them to make a more precise and reasonable decision about what they are buying.
Keywords: Decision making, fertility clinics, framing theory, persuasive information, social egg freezing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 995