WASET
	@article{(Open Science Index):https://publications.waset.org/pdf/10002960,
	  title     = {Measurements of MRI R2* Relaxation Rate in Liver and Muscle: Animal Model},
	  author    = {Chiung-Yun Chang and  Po-Chou Chen and  Jiun-Shiang Tzeng and  Ka-Wai Mac and  Chia-Chi Hsiao and  Jo-Chi Jao},
	  country	= {},
	  institution	= {},
	  abstract     = {This study was aimed to measure effective transverse
relaxation rates (R2*) in the liver and muscle of normal New Zealand
White (NZW) rabbits. R2* relaxation rate has been widely used in
various hepatic diseases for iron overload by quantifying iron contents
in liver. R2* relaxation rate is defined as the reciprocal of T2*
relaxation time and mainly depends on the constituents of tissue.
Different tissues would have different R2* relaxation rates. The signal
intensity decay in Magnetic resonance imaging (MRI) may be
characterized by R2* relaxation rates. In this study, a 1.5T GE Signa
HDxt whole body MR scanner equipped with an 8-channel high
resolution knee coil was used to observe R2* values in NZW rabbit’s
liver and muscle. Eight healthy NZW rabbits weighted 2 ~ 2.5 kg were
recruited. After anesthesia using Zoletil 50 and Rompun 2% mixture,
the abdomen of rabbit was landmarked at the center of knee coil to
perform 3-plane localizer scan using fast spoiled gradient echo
(FSPGR) pulse sequence. Afterwards, multi-planar fast gradient echo
(MFGR) scans were performed with 8 various echo times (TEs) to
acquire images for R2* measurements. Regions of interest (ROIs) at
liver and muscle were measured using Advantage workstation.
Finally, the R2* was obtained by a linear regression of ln(sı) on TE.
The results showed that the longer the echo time, the smaller the signal
intensity. The R2* values of liver and muscle were 44.8 ± 10.9 s-1 and
37.4 ± 9.5 s-1, respectively. It implies that the iron concentration of
liver is higher than that of muscle. In conclusion, the more the iron
contents in tissue, the higher the R2*. The correlations between R2*
and iron content in NZW rabbits might be valuable for further
exploration.},
	    journal   = {International Journal of Animal and Veterinary Sciences},
	  volume    = {9},
	  number    = {11},
	  year      = {2015},
	  pages     = {1159 - 1162},
	  ee        = {https://publications.waset.org/pdf/10002960},
	  url   	= {https://publications.waset.org/vol/107},
	  bibsource = {https://publications.waset.org/},
	  issn  	= {eISSN: 1307-6892},
	  publisher = {World Academy of Science, Engineering and Technology},
	  index 	= {Open Science Index 107, 2015},
	}