Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33156
Closed-Form Solutions for Nanobeams Based On the Nonlocal Euler-Bernoulli Theory
Authors: Francesco Marotti de Sciarra, Raffaele Barretta
Abstract:
Starting from nonlocal continuum mechanics, a thermodynamically new nonlocal model of Euler-Bernoulli nanobeams is provided. The nonlocal variational formulation is consistently provided and the governing differential equation for transverse displacement is presented. Higher-order boundary conditions are then consistently derived. An example is contributed in order to show the effectiveness of the proposed model.
Keywords: Bernoulli-Euler beams, Nanobeams, nonlocal elasticity.
Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1099900
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2343References:
[1] J. Arcamone, G. Rius, G. Abadal, J. Teva, N. Barniol and F. Pérez- Murano, “Micro/nanomechanical resonators for distributed mass sensing with capacitive detection,” Microelectron. Eng., vol. 83 n. 4-9, pp. 1216–1220, 2006.
[2] E. Gil-Santos, D. Ramos, J. Martínez, M. Ferníndez-Regúlez, R. García, M. Calleja and J. Tamayo, “Nanomechanical mass sensing and stiffness spectrometry based on two-dimensional vibrations of resonant nanowires,” Nature Nanotechnology, vol. 5, n. 9, pp. 641–645, 2010.
[3] T. Larsen, S. Schmid, L. Grönberg, A. Niskanen, J. Hassel and S. Dohn, Boisen, “Ultrasensitive string-based temperature sensors,” Appl. Phys. Lett., vol. 98, n. 12, pp. .
[4] H. Sadeghian, H. Goosen, A. Bossche and F. Van Keulen, “Application of electrostatic pull-in instability on sensing adsorbate stiffness in nanomechanical resonators,” Thin Solid Films, vol. 518, n. 17, pp. 5018– 5021, 2010.
[5] M. Narducci, E. Figueras, M. Lopez, I. Gracia, J. Santander, P. Ivanov, L. Fonseca and C. Cane, “Sensitivity improvement of a microcantilever based mass sensor,” Microelectron. Eng., vol. 86, n. 4-6, pp. 1187–1189, 2009.
[6] H. Sadeghiant, C. Yang, K. Gavan, J. Goosen, E. Van Der Drift, H. Van Der Zant, P. French, A. Bossche and F. Van Keulen, “Effects of surface stress on nanocantilevers,” e-Journal of Surf. Sci. Nanotec., vol. 7, pp. 161–166, 2009.
[7] B. Jankovic, J. Pelipenko, M. Škarabot, I. Muševic and J. Kristl, “The design trend in tissue-engineering scaffolds based on nanomechanical properties of individual electrospun nanofibers,” Int. J. Pharm., vol. 455, n. 1-2, pp. 338–347, 2013.
[8] D.C.C. Lam, F. Yang, A.C.M. Chong, J. Wang and P. Tong, “Experiments and theory in strain gradient elasticity,” J. Mech. Phys. Solids, vol. 51, pp. 1477-1508, 2003.
[9] F.Q. Yang, “Size dependent effective modulus of elastic composite materials: spherical nanocavities at dilute concentrations,” J. Appl. Phys., vol. 95, pp. 3516-3520, 2004.
[10] I.A. Guz, A.A. Rodger, A.N. Guz and J.J. Rushchitsky, “Developing the mechanical models for nanomaterials,” Composites Part A: Applied Science and Manufacturing, vol. 38, pp. 1234-1250, 2007.
[11] Z. Yao, C.-C. Zhu, M. Cheng and J. Liu, “Mechanical properties of carbon nanotube by molecular dynamics simulation,” Comp. Mat. Sci., vol. 22, pp. 180-184, 2001.
[12] B.W. Xing, Z.C. Chun and C.W. Zhao, “Simulation of Young's modulus of single-walled carbon nanotubes by molecular dynamics,” Physica B: Condensed Matter, vol. 352, pp. 156-163, 2004.
[13] F. Marotti De Sciarra, R. Barretta, “A gradient model for Timoshenko nanobeams,” Physica E: Low-Dimensional Systems and Nanostructures, vol. 62, pp. 1–9, 2014.
[14] A. Eringen, Nonlocal Continuum Field Theories, Springer Verlag, 2002.
[15] E.C. Aifantis, “Update on a class of gradient theories,” Mech. Mat., vol. 35, pp. 259-280, 2003.
[16] M. Mohammad-Abadi and A.R. Daneshmehr, “Size dependent buckling analysis of microbeams based on modified couple stress theory with high order theories and general boundary conditions,” Int. J. Eng. Sci., vol. 74, pp. 1-14, 2014.
[17] H.M. Ma, X.L. Gao and J.N. Reddy, “A microstructure-dependent Timoshenko beam model based on a modified couple stress theory,” J. Mech. Phys. Solids, vol. 56, pp. 3379-3391, 2008.
[18] F. Marotti de Sciarra, “On non-local and non-homogeneous elastic continua,” Int. J. Solids Struc., vol. 46, pp. 651-676, 2009.
[19] F. Marotti de Sciarra, “A nonlocal finite element approach to nanobeams,” Advances in Mechanical Engineering, vol. ID 720406, pp. 1-8, dx.doi.org/10.1155/2013/720406, 2013.
[20] F. Marotti de Sciarra, “Finite element modelling of nonlocal beams,” Physica E: Low-dimensional Systems and Nanostructures, vol. 59 pp. 144–149, 2013.
[21] R. Barretta, F. Marotti de Sciarra and M. Diaco, “Small-scale effects in nanorods,” Acta Mech., vol. 225, pp. 1945-1953, 2014.
[22] R. Barretta, F. Marotti de Sciarra, “A nonlocal model for carbon nanotubes under axial loads,” Adv. Mat. Sci. and Eng., Article ID 360935, pp. 1-6, 2013 doi: 10.1155/2013/360935.
[23] R. Barretta, F. Marotti de Sciarra, “Analogies between nonlocal and local Bernoulli-Euler nanobeams,” Arch. Appl. Mech, vol. 85, pp. 89- 99, 2015.
[24] J. Peddieson, G.R. Buchanan and R.P. McNitt, “Application of nonlocal continuum models to nanotechnology,” Int. J. Eng. Sci., vol. 41, pp. 305-312, 2003.
[25] C.M. Wang, Y.Y. Zhang, S.S. Ramesh and S. Kitipornchai, “Buckling analysis of micro-and nano-rods/tubes based on nonlocal Timoshenko beam theory,” J. Phys. D: Appl. Phys., vol. 39, pp. 3904-3909, 2006.
[26] J.N. Reddy, “Nonlocal nonlinear formulations for bending of classical and shear deformation theories of beams and plates,” Int. J. Eng. Sci., vol. 48, pp. 1507-1518, 2010.
[27] F. Marotti de Sciarra, “Hardening plasticity with nonlocal strain damage,” Int. J. Plasticity, vol. 34, pp. 114-138, 2012.